Improved soybean root association of N-starved Bradyrhizobium japonicum. (65/348)

In this study, we addressed the effects of N limitation in Bradyrhizobium japonicum for its association with soybean roots. The wild-type strain LP 3001 grew for six generations with a growth rate of 1.2 day(-1) in a minimal medium with 28 mM mannitol as the carbon source and with the N source [(NH(4))(2)SO(4)] limited to only 20 microM. Under these conditions, the glutamine synthetase (GS) activity was five to six times higher than in similar cultures grown with 1 or 0.1 mM (NH(4))(2)SO(4). The NtrBC-inducible GSII form of this enzyme accounted for 60% of the specific activity in N-starved rhizobia, being negligible in the other two cultures. The exopolysaccharide (EPS) and capsular polysaccharide (CPS) contents relative to cell protein were significantly higher in the N-starved cultures, but on the other hand, the poly-3-hydroxybutyrate level did not rise in comparison with N-sufficient cultures. In agreement with the accumulation of CPS in N-starved cultures, soybean lectin (SBL) binding as well as stimulation of rhizobial adsorption to soybean roots by SBL pretreatment were higher. The last effect was evident only in cultures that had not entered stationary phase. We also studied nodC gene induction in relation to N starvation. In the chromosomal nodC::lacZ fusion Bj110-573, nodC gene expression was induced by genistein 2.7-fold more in N-starved young cultures than in nonstarved ones. In stationary-phase cultures, nodC gene expression was similarly induced in N-limited cultures, but induction was negligible in cultures limited by another nutrient. Nodulation profiles obtained with strain LP 3001 grown under N starvation indicated that these cultures nodulated faster. In addition, as culture age increased, the nodulation efficiency decreased for two reasons: fewer nodules were formed, and nodulation was delayed. However, their relative importance was different according to the nutrient condition: in older cultures the overall decrease in the number of nodules was the main effect in N-starved cultures, whereas a delay in nodulation was more responsible for a loss in efficiency of N-sufficient cultures. Competition for nodulation was studied with young cultures of two wild-type strains differing only in their antibiotic resistance, the N-starved cultures being the most competitive.  (+info)

Identification of active site residues in Bradyrhizobium japonicum acetyl-CoA synthetase. (66/348)

Acetyl-CoA synthetase (ACS) catalyses the activation of acetate to acetyl-CoA in the presence of ATP and CoA. The gene encoding Bradyrhyzobium japonicum ACS has been cloned, sequenced, and expressed in Escherichia coli. The enzyme comprises 648 amino acid residues with a calculated molecular mass of 71,996 Da. The recombinant enzyme was also purified from the transformed E. coli. The enzyme was essentially indistinguishable from the ACS of B. japonicum bacteroids as to the criteria of polyacrylamide gel electrophoresis and biochemical properties. Based on the results of database analysis, Gly-263, Gly-266, Lys-269, and Glu-414 were selected for site-directed mutagenesis in order to identify amino acid residues essential for substrate binding and/or catalysis. Four different mutant enzymes (G263I, G266I, K269G, and E414Q) were prepared and then subjected to steady-state kinetic studies. The kinetic data obtained for the mutants suggest that Gly-266 and Lys-269 participate in the formation of acetyl-AMP, whereas Glu-414 may play a role in acetate binding.  (+info)

Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. (67/348)

The tfd genes of Ralstonia eutropha JMP134 are the only well-characterized set of genes responsible for 2,4-dichlorophenoxyacetic acid (2,4-D) degradation among 2,4-D-degrading bacteria. A new family of 2,4-D degradation genes, cadRABKC, was cloned and characterized from Bradyrhizobium sp. strain HW13, a strain that was isolated from a buried Hawaiian soil that has never experienced anthropogenic chemicals. The cadR gene was inferred to encode an AraC/XylS type of transcriptional regulator from its deduced amino acid sequence. The cadABC genes were predicted to encode 2,4-D oxygenase subunits from their deduced amino acid sequences that showed 46, 44, and 37% identities with the TftA and TftB subunits of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) oxygenase of Burkholderia cepacia AC1100 and with a putative ferredoxin, ThcC, of Rhodococcus erythropolis NI86/21, respectively. They are thoroughly different from the 2,4-D dioxygenase gene, tfdA, of R. eutropha JMP134. The cadK gene was presumed to encode a 2,4-D transport protein from its deduced amino acid sequence that showed 60% identity with the 2,4-D transporter, TfdK, of strain JMP134. Sinorhizobium meliloti Rm1021 cells containing cadRABKC transformed several phenoxyacetic acids, including 2,4-D and 2,4,5-T, to corresponding phenol derivatives. Frameshift mutations indicated that each of the cadRABC genes was essential for 2,4-D conversion in strain Rm1021 but that cadK was not. Five 2,4-D degraders, including Bradyrhizobium and Sphingomonas strains, were found to have cadA gene homologs, suggesting that these 2,4-D degraders share 2,4-D degradation genes similar to those of strain HW13 cadABC.  (+info)

The Bradyrhizobium japonicum hsfA gene exhibits a unique developmental expression pattern in cowpea nodules. (68/348)

The Bradyrhizobium japonicum host-specific fixation gene hsfA was identified as essential for nitrogen fixation on cowpea, but not required for nitrogen fixation on soybean or siratro. The DNA sequence of the hsfA promoter contains a consensus RpoN, -24/-12 binding site, suggesting the involvement of a regulatory protein that binds to an upstream activating sequence (UAS). To further explore the regulation of this interesting gene, serial deletions of the hsfA promoter were made and fused with the beta-glucuronidase (GUS) gene. The HsfA3 deletion, containing 60 bp 5' of the -24/-12 sequence, showed a similar level of GUS expression to that shown by the longest fusion construct (HsfA1), containing 464 bp of upstream sequence. In contrast, the HsfA4-GUS fusion, containing only 20 bp 5' of the -24/-12 region, showed no GUS activity, delimiting the location of a putative UAS to a 40-bp region. During nodule development, GUS expression first appeared in nodules 12 days postinoculation (dpi) and reached a maximum level of expression in approximately 17-day-old nodules. By 28 dpi, HsfA-GUS expression had returned to a low, basal level. These data were consistent with the detection of hsfA mRNA by in situ hybridization in 17-day-old nodules, but not in 28-day-old nodules. In contrast to the stage-specific expression in cowpea, HsfA-GUS expression increased with nodule development in HsfA3-inoculated soybean. These data indicate that HsfA expression is regulated in cowpea in a unique developmental manner and that the DNA regulatory regions that control this expression are confined to a short, promoter-proximal region.  (+info)

Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation. (69/348)

Bradyrhizobium japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. Plasmid pZB32, carrying a nodY::lacZ transcriptional gene fusion, was introduced into B. japonicum cells that had been subjected to UV mutagenesis. Ten independent transformants producing a blue color on plates containing 5bromo-4chloro-3indolyl-beta-D-galactopyranoside but lacking genistein, indicative of constitutive expression of the nodY::lacZ reporter gene, were isolated. Beta-galactosidase activity assays revealed that while all of the 10 strains were sensitive to low concentrations of genistein, none exhibited truly constitutive nodY::lacZ expression in liquid culture. Soybean plants inoculated with three of the mutants were chlorotic and stunted, with shoot dry weights close to those of the uninoculated plants, indicating the absence of nitrogen fixation. Differences in the kinetics of nodY::lacZ expression and lipochitin oligosaccharide Nod signal production suggested that the strains carried different mutations. Some of these strains may be useful in mitigating the low root zone temperature-associated delay in soybean nodulation at the northern extent of soybean cultivation.  (+info)

Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. (70/348)

The heme biosynthetic pathway culminates with the insertion of iron into protoporphyrin catalyzed by ferrochelatase. The Bradyrhizobium japonicum iron response regulator (Irr) protein represses the pathway at an early step under iron limitation to prevent protoporphyrin synthesis from exceeding iron availability. Here, we show that Irr interacts directly with ferrochelatase and responds to iron via the status of heme and protoporphyrin localized at the site of heme synthesis. In the presence of iron, ferrochelatase inactivates Irr, followed by heme-dependent Irr degradation to derepress the pathway. Under iron limitation, protoporphyrin relieves the inhibition of Irr by ferrochelatase, probably by promoting protein dissociation, allowing genetic repression. Thus, metabolic control of the heme pathway involves a regulatory function of a biosynthetic enzyme to affect gene expression. Furthermore, heme can serve as a signaling molecule without accumulating freely in cells.  (+info)

A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes. (71/348)

Bradyrhizobium japonicum nod gene expression was previously shown to be population density dependent. Induction of the nod genes is highest at low culture density and repressed at high population densities. This repression involves both NolA and NodD2 and is mediated by an extracellular factor found in B. japonicum conditioned medium. NolA and NodD2 expression is maximal at high population densities. We demonstrate here that a response regulator, encoded by nwsB, is required for the full expression of the B. japonicum nodYABC operon. In addition, NwsB is also required for the population-density-dependent expression of both nolA and nodD2. Expression of nolA and nodD2 in the nwsB mutant remained at a basal level, even at high culture densities. The nwsB defect could be complemented by overexpression of a second response regulator, NodW. Consistent with the fact that NolA and NodD2 repress nod gene expression, the expression of a nodY-lacZ fusion in the nwsB mutant was unaffected by culture density. In plant assays with GUS fusions, nodules infected with the wild type showed no nodY-GUS expression. In contrast, nodY-GUS expression was not repressed in nodules infected with the nwsB mutant. Nodule competition assays between the wild type and the nwsB mutant revealed that the addition of conditioned medium resulted in a competitive advantage for the nwsB mutant.  (+info)

Isolation and characterization of the major nod factor of Bradyrhizobium japonicum strain 532C. (72/348)

Bradyrhizobium japonicum 532C nodulates soybean effectively under cool Canadian spring conditions and is used in Canadian commercial inoculants. The major lipo-chitooligosaccharide (LCO), bacteria-to-plant signal was characterized by HPLC, FAB-mass spectroscopy MALDI-TOF mass spectroscopy and revealed to be LCO Nod Bj-V (C18:1, MeFuc). This LCO is produced by type I strains of B. japonicum and is therefore unlikely to account for this strains superior ability to nodulate soybean under Canadian conditions. We also found that use of yeast extract mannitol medium gave similar results to that of Bergerson minimal medium.  (+info)