The effects of feeding flaxseed during the receiving period on morbidity, mortality, performance, and carcass characteristics of heifers. (9/41)

 (+info)

Feedlot health and performance effects associated with the timing of respiratory disease treatment. (10/41)

 (+info)

Plasma metabolites of receiving heifers and the relationship between apparent bovine respiratory disease, body weight gain, and carcass characteristics. (11/41)

 (+info)

An evaluation of bovine respiratory disease complex in feedlot cattle: Impact on performance and carcass traits using treatment records and lung lesion scores. (12/41)

 (+info)

Bayesian estimation of the performance of using clinical observations and harvest lung lesions for diagnosing bovine respiratory disease in post-weaned beef calves. (13/41)

Bovine respiratory disease (BRD) diagnosis during the postweaning phase of beef production is an important component of effective preventive health and treatment programs. Although identification of diseased animals based on signs of clinical illness (CI) is a common method in the beef industry for identifying BRD, very little information is available on the accuracy of this method. Previous investigators hypothesized that monitoring pulmonary lesions at harvest (LU) could be a more reliable indicator of disease status during the postweaning phase. A structured literature review was conducted to identify research that compared CI and LU. Because there is no true gold standard for diagnosing BRD, Bayesian methods were used to estimate the sensitivity and specificity of each diagnostic method relative to a BRD diagnosis at any time during the postweaning phase. Results from the current study indicate that the estimated diagnostic sensitivity and specificity of CI were 61.8% (97.5% probability interval [PI]: 55.7, 68.4) and 62.8% (97.5% PI: 60.0, 65.7), respectively. Use of LU for a BRD diagnosis was estimated to have a sensitivity of 77.4% (97.5% PI: 66.2, 87.3) and a specificity of 89.7% (97.5% PI: 86.0, 93.8). Further analysis revealed that the probabilities of LU having higher sensitivity and specificity than CI were 99.4% and 100%, respectively. The present research indicates that neither method was perfect, and both methods were relatively poor at correctly classifying truly diseased animals (sensitivity) but that LU was more accurate than CI for BRD diagnosis. Results from the present study should be considered when these diagnostic methods are used to evaluate BRD outcomes in clinical and research settings.  (+info)

Lung pathology and infectious agents in fatal feedlot pneumonias and relationship with mortality, disease onset, and treatments. (14/41)

This study charted 237 fatal cases of bovine respiratory disease (BRD) observed from May 2002 to May 2003 in a single Oklahoma feed yard. Postmortem lung samples were used for agent identification and histopathology. Late in the study, 94 skin samples (ear notches) were tested for Bovine viral diarrhea virus (BVDV) by immunohistochemistry (IHC). Bovine respiratory disease morbidity was 14.7%, and the mortality rate of all causes was 1.3%, with more than half (53.8%) attributed to BRD (0.7% total of all causes). The agents isolated were the following: Mannheimia haemolytica (25.0%), Pasteurella multocida (24.5%), Histophilus somni (10.0%), Arcanobacterium pyogenes (35.0%), Salmonella spp. (0.5%), and Mycoplasma spp. (71.4%). Viruses recovered by cell culture were BVDV-1a noncytopathic (NCP; 2.7%), BVDV-1a cytopathic (CP) vaccine strain (1.8%), BVDV-1b NCP (2.7%), BVDV-2a NCP (3.2%), BVDV-2b CP (0.5%), and Bovine herpesvirus 1 (2.3%). Gel-based polymerase chain reaction (PCR) assays were 4.6% positive for Bovine respiratory syncytial virus and 10.8% positive for Bovine coronavirus. Bovine viral diarrhea virus IHC testing was positive in 5.3% of the animals. The mean values were determined for the treatment data: fatal disease onset (32.65 days), treatment interval (29.15 days), number of antibiotic treatments (2.65), number of different antibiotics (1.89), and day of death (61.81 days). Lesions included the following: 1) duration: acute (21%), subacute (15%), chronic (40.2%), healing (2.8%), normal (18.1%), and autolyzed (2.8%); 2) type of pneumonia: lobar bronchopneumonia (LBP; 27.1%), LBP with pleuritis (49.1%), interstitial pneumonia (5.1%), bronchointerstitial pneumonia (1.4%), septic (0.9%), embolic foci (0.5%), other (2.8%), normal (10.3%), and autolyzed (2.8%); and 3) bronchiolar lesions: bronchiolitis obliterans (39.7%), bronchiolar necrosis (26.6%), bronchiolitis obliterans/bronchiolar necrosis (1.4%), other bronchiolar lesions (6.5%), and bronchiolar lesion negative (25.7%). Statistically significant relationships were present among the agents, lesions, and the animal treatment, disease onset, and mortality data. Clinical illnesses observed in this study were lengthier than those reported 16-20 years ago, based on fatal disease onset, treatment interval, and day of death.  (+info)

Effect of bovine respiratory disease and overall pathogenic disease incidence on carcass traits. (15/41)

 (+info)

Evaluation of fixed sources of variation and estimation of genetic parameters for incidence of bovine respiratory disease in preweaned calves and feedlot cattle. (16/41)

 (+info)