Anti-interleukin-15 prevents arthritis in Borrelia-vaccinated and -infected mice. (41/122)

We showed previously that interleukin-17 (IL-17) plays a significant role in the induction of arthritis associated with Borrelia vaccination and challenge. Little information, however, is available about the chain of immunologic events that leads to the release of IL-17. The production of IL-17 has been linked to stimulation of memory cells by IL-15. Therefore, we hypothesized that IL-15 is involved in the induction of arthritis associated with Borrelia vaccination and infection of mice. Here we present evidence that treatment of Borrelia-vaccinated and -infected mice with anti-IL-15 antibody prevents swelling of the hind paws. More importantly, both anti-IL-15 antibody- and recombinant IL-15 receptor alpha-treated Borrelia-vaccinated and -infected mice were free of major histopathologic indications of arthritis, including hyperplasia, hypertrophy, and vilus formation of the synovium. Similarly, the synovial space and perisynovium were free of inflammatory cells. By contrast, the synovium of nontreated Borrelia-vaccinated and -infected mice had overt hyperplasia, hypertrophy, and vilus formation. Moreover, the synovial space and perisynovium were infiltrated with neutrophils, macrophages, and lymphocytes. Finally, we show that recombinant IL-15 stimulates the release of IL-17 from lymph node cells obtained near the arthritic site. These results suggest that IL-15 plays a major role in orchestrating IL-17 induction of arthritis associated with Borrelia-vaccinated and -infected mice.  (+info)

Testing of the Biocan B inj. ad us. vet. vaccine and development of the new recombinant vaccine against canine borreliosis. (42/122)

Verification of the efficacy of Biocan B inj. ad us. vet. (Bioveta, a.s.) was done by challenge testing. Ticks collected in the nature were used as natural vectors of the infection. Six beagles and two control ones were used in the test. Formation of outer surface protein A specific antibodies (OspA antibodies) and borrelia specific immonoglobulins (IgG) was measured by Western blot and EIA in the sera samples. The tissue samples were used for detection of borreliae by cultivation method and dark field microscopy (DFM). Formation of IgG antibodies and OspA antibodies after vaccination was observed. The maximum titer level of antibodies was reached between 21. and 49. day after vaccination and then slowly decreased. Presence of borreliae was detected only in skin biopsies of non-vaccinated dogs. The post mortem tissue samples showed presence of borreliae in all of the samples of the non-vaccinated dogs. The tissues of the vaccinated dogs were not infected with borreliae, except for two samples of dog with low titer levels of OspA antibodies. The development of the new vaccine is based on preparation of recombinant outer surface proteins (e.g. rOspA and rOspC) of B. afzelii, B. burgdorferi and B. garinii origin. Chosen recombinant proteins were successfully expressed in E. coli. The obtained purified proteins are currently being tested on laboratory BALB/c mice. Formation of specific antibodies against some recombinant proteins has been confirmed. These proteins are suitable candidates for preparation of a vaccine prototype and they will be subsequently used in challenge tests.  (+info)

Identification of a TLR-independent pathway for Borrelia burgdorferi-induced expression of matrix metalloproteinases and inflammatory mediators through binding to integrin alpha 3 beta 1. (43/122)

Borrelia burgdorferi stimulates a robust inflammatory response at sites of localization. Binding of borrelial lipoproteins to TLR-2 is one pathway important in the host response to B. burgdorferi. However, while TLR-2 is clearly important in control of infection, inflammation is actually worsened in the absence of TLR-2 or the shared TLR adapter molecule, MyD88, suggesting that there are alternative pathways regulating inflammation. Integrins are cell surface receptors that play an important role in cell to cell communications and that can activate inflammatory signaling pathways. In this study, we report for the first time that B. burgdorferi binds to integrin alpha(3)beta(1) and that binding of B. burgdorferi to this integrin results in induction of proinflammatory cytokines, chemokines, and end-effector molecules such as matrix metalloproteinases in primary human chondrocyte cells. Expression of these same molecules is not affected by the absence of MyD88 in murine articular cartilage, suggesting that the two pathways act independently in activating host inflammatory responses to B. burgdorferi. B. burgdorferi-induced alpha(3) signaling is mediated by JNK, but not p38 MAPK. In summary, we have identified a new host receptor for B. burgdorferi, integrin alpha(3)beta(1); binding of B. burgdorferi to integrin alpha(3)beta(1) results in the release of inflammatory mediators and is proposed as a TLR-independent pathway for activation of the innate immune response by the organism.  (+info)

Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity. (44/122)

BACKGROUND: At least three species of Borrelia burgdorferi sensu lato (Bbsl) cause tick-borne Lyme disease. Previous work including the genome analysis of B. burgdorferi B31 and B. garinii PBi suggested a highly variable plasmid part. The frequent occurrence of duplicated sequence stretches, the observed plasmid redundancy, as well as the mainly unknown function and variability of plasmid encoded genes rendered the relationships between plasmids within and between species largely unresolvable. RESULTS: To gain further insight into Borreliae genome properties we completed the plasmid sequences of B. garinii PBi, added the genome of a further species, B. afzelii PKo, to our analysis, and compared for both species the genomes of pathogenic and apathogenic strains. The core of all Bbsl genomes consists of the chromosome and two plasmids collinear between all species. We also found additional groups of plasmids, which share large parts of their sequences. This makes it very likely that these plasmids are relatively stable and share common ancestors before the diversification of Borrelia species. The analysis of the differences between B. garinii PBi and B. afzelii PKo genomes of low and high passages revealed that the loss of infectivity is accompanied in both species by a loss of similar genetic material. Whereas B. garinii PBi suffered only from the break-off of a plasmid end, B. afzelii PKo lost more material, probably an entire plasmid. In both cases the vls gene locus encoding for variable surface proteins is affected. CONCLUSION: The complete genome sequences of a B. garinii and a B. afzelii strain facilitate further comparative studies within the genus Borrellia. Our study shows that loss of infectivity can be traced back to only one single event in B. garinii PBi: the loss of the vls cassettes possibly due to error prone gene conversion. Similar albeit extended losses in B. afzelii PKo support the hypothesis that infectivity of Borrelia species depends heavily on the evasion from the host response.  (+info)

Role of interleukin 10 during persistent infection with the relapsing fever Spirochete Borrelia turicatae. (45/122)

Relapsing fever is an infection characterized by peaks of spirochetemia attributable to antibody selection against variable serotypes. In the absence of B cells, serotypes cannot be cleared, resulting in persistent infection. We previously identified differences in spirochetemia and disease severity during persistent infection of severe combined immunodeficiency mice with isogenic serotypes 1 (Bt1) or 2 (Bt2) of Borrelia turicatae. To investigate this further, we studied pathogen load, clinical disease, cytokine/chemokine production, and inflammation in mice deficient in B (Igh6-/-) or B and T (Rag1-/-) cells persistently infected with Bt1 or Bt2. The results showed that Igh6-/- mice, despite lower spirochetemia, had a significantly aggravated disease course compared with Rag1-/- mice. Measurement of cytokines revealed a significant positive correlation between pathogen load and interleukin (IL)-10 in blood, brain, and heart. Bt2-infected Rag1-/- mice harbored the highest spirochetemia and, at the same time, displayed the highest IL-10 plasma levels. In the brain, Bt1, which was five times more neurotropic than Bt2, caused higher IL-10 production. Activated microglia were the main source of IL-10 in brain. IL-10 injected systemically reduced disease and spirochetemia. The results suggest IL-10 plays a protective role as a down-regulator of inflammation and pathogen load during infection with relapsing fever spirochetes.  (+info)

MyD88- and Bruton's tyrosine kinase-mediated signals are essential for T cell-independent pathogen-specific IgM responses. (46/122)

Bacteremia is one of the leading causes of death by infectious disease. To understand the immune mechanisms required for the rapid control of bacteremia, we studied Borrelia hermsii, a bacterial pathogen that colonizes the blood stream of humans and rodents to an extremely high density. A T cell-independent IgM response is essential and sufficient for controlling B. hermsii bacteremia. Mice deficient in Bruton's tyrosine kinase (Btk), despite their known defect in BCR signaling, generated B. hermsii-specific IgM and resolved bacteremia, suggesting that an alternative activation or costimulatory pathway remained functional for T cell-independent B cells in Btk(-/-) mice. B. hermsii contains putative ligands for TLRs, and we found that mice deficient in TLR1, TLR2, or the TLR adaptor MyD88 generated anti-B. hermsii IgM with delayed kinetics and suffered more severe episodes of bacteremia. In striking contrast to the anti-B. hermsii IgM response in mice deficient only in Btk, mice deficient in both Btk and MyD88 were entirely incapable of generating B. hermsii-specific Ab or resolving bacteremia. The response to a T cell-dependent model Ag was unaffected in Btk(-/-) x MyD88(-/-) mice. These results suggest that MyD88 specifically promotes T cell-independent BCR signaling and that, in the absence of Btk, this TLR-mediated stimulation is a required component of this signal.  (+info)

Increasing the interaction of Borrelia burgdorferi with decorin significantly reduces the 50 percent infectious dose and severely impairs dissemination. (47/122)

Tight regulation of surface antigenic expression is crucial for the pathogenic strategy of the Lyme disease spirochete, Borrelia burgdorferi. Here, we report the influence of increasing expression of decorin-binding protein A (DbpA), one of the most investigated spirochetal surface adhesins, on the 50% infectious dose (ID(50)), dissemination, tissue colonization, pathogenicity, and persistence of B. burgdorferi in the murine host. Our in vitro assays showed that increasing DbpA expression dramatically increased the interaction of B. burgdorferi with decorin and sensitivity to growth inhibition/killing by anti-DbpA antibodies; however, this increased interaction did not affect spirochetal growth and replication in the presence of decorin. Increasing DbpA expression significantly reduced ID(50) values and severely impaired dissemination in severe combined immunodeficiency (SCID) and immunocompetent mice. During infection of SCID mice, B. burgdorferi with increased DbpA expression was able to effectively colonize heart and skin tissues, but not joint tissues, completely abrogating arthritis virulence. Although increasing DbpA expression did not affect spirochetal persistence in the skin, it diminished the ability of B. burgdorferi to persist in the heart and joint tissues during chronic infection of immunocompetent mice. Taken together, the study highlights the importance of controlling surface antigen expression in the infectivity, dissemination, tissue colonization, pathogenicity, and persistence of B. burgdorferi during mammalian infection.  (+info)

Blackbirds and song thrushes constitute a key reservoir of Borrelia garinii, the causative agent of borreliosis in Central Europe. (48/122)

Blackbirds (Turdus merula) and song thrushes (Turdus philomelos) were found to carry 95% of all spirochete-infected tick larvae among 40 bird species captured in Central Europe. More than 90% of the infections were typed as Borrelia garinii and Borrelia valaisiana. We conclude that thrushes are key players in the maintenance of these spirochete species in this region of Central Europe.  (+info)