Asymmetrical flagellar rotation in Borrelia burgdorferi nonchemotactic mutants. (49/1041)

The Lyme disease spirochete Borrelia burgdorferi has bundles of periplasmic flagella subpolarly located at each cell end. These bundles rotate in opposite directions during translational motility. When not translating, they rotate in the same direction, and the cells flex. Here, we present evidence that asymmetrical rotation of the bundles during translation does not depend upon the chemotaxis signal transduction system. The histidine kinase CheA is known to be an essential component in the signaling pathway for bacterial chemotaxis. Mutants of cheA in flagellated bacteria continually rotate their flagella in one direction. B. burgdorferi has two copies of cheA designated cheA1 and cheA2. Both genes were found to be expressed in growing cells. We reasoned that if chemotaxis were essential for asymmetrical rotation of the flagellar bundles, and if the flagellar motors at both cell ends were identical, inactivation of the two cheA genes should result in cells that constantly flex. To test this hypothesis, the signaling pathway was completely blocked by constructing the double mutant cheA1kan cheA2ermC. This double mutant was deficient in chemotaxis. Rather than flexing, it failed to reverse, and it continually translated only in one direction. Video microscopy of mutant cells indicated that both bundles actively rotated. The results indicate that asymmetrical rotation of the flagellar bundles of spirochetes does not depend upon the chemotaxis system but rather upon differences between the two flagellar bundles. We propose that certain factors within the spirochete localize at the flagellar motors at one end of the cell to effect this asymmetry.  (+info)

Examination of the Borrelia burgdorferi transcriptome in Ixodes scapularis during feeding. (50/1041)

Borrelia burgdorferi gene expression within the guts of engorging Ixodes scapularis ticks was examined by use of differential immunoscreening and differential expression with a customized amplified library. Fourteen chromosomal genes involved in energy metabolism, substrate transport, and signal transduction and 10 (4 chromosomal and 6 plasmid) genes encoding putative lipoproteins and periplasmic proteins were preferentially expressed in engorging ticks. These data demonstrate a new approach to the global analysis of B. burgdorferi genes that are preferentially expressed within the vector during feeding.  (+info)

Modulation of Borrelia burgdorferi stringent response and gene expression during extracellular growth with tick cells. (51/1041)

Borrelia burgdorferi N40 multiplied extracellularly when it was cocultured with tick cells in L15BS medium, a medium which by itself did not support B. burgdorferi N40 growth. Growth of B. burgdorferi N40 in the presence of tick cells was associated with decreased production of (p)ppGpp, the stringent response global regulator, a fourfold decrease in relA/spoT mRNA, an eightfold net decrease in bmpD mRNA, and a fourfold increase in rpsL-bmpD mRNA compared to growth of B. burgdorferi in BSK-H medium. As a result, the polycistronic rpsL-bmpD mRNA level increased from 3 to 100% of the total bmpD message. These observations demonstrate that there are reciprocal interactions between B. burgdorferi and tick cells in vitro and indicate that the starvation-associated stringent response mediated by (p)ppGpp present in B. burgdorferi growing in BSK-H medium is ameliorated in B. burgdorferi growing in coculture with tick cell lines. These results suggest that this system can provide a useful model for identifying genes controlling interactions of B. burgdorferi with tick cells in vitro when it is coupled with genetic methods to isolate and complement B. burgdorferi mutants.  (+info)

DNA microarray assessment of putative Borrelia burgdorferi lipoprotein genes. (52/1041)

A DNA microarray containing fragments of 137 Borrelia burgdorferi B31 putative lipoprotein genes was used to examine Lyme disease spirochetes. DNA from B. burgdorferi sensu stricto B31, 297, and N40; Borrelia garinii IP90; and Borrelia afzelii P/Gau was fluorescently labeled and hybridized to the microarray, demonstrating the degree to which the individual putative lipoprotein genes were conserved among the genospecies. These data show that a DNA microarray can globally examine the genes encoding B. burgdorferi lipoproteins.  (+info)

The structure of a pyrophosphate-dependent phosphofructokinase from the Lyme disease spirochete Borrelia burgdorferi. (53/1041)

The structure of the 60 kDa pyrophosphate (PP(i))-dependent phosphofructokinase (PFK) from Borrelia burgdorferi has been solved and refined (R(free) = 0.243) at 2.55 A resolution. The domain structure of eubacterial ATP-dependent PFKs is conserved in B. burgdorferi PFK, and there are three large insertions relative to E. coli PFK, including a helical domain containing a hairpin structure that interacts with the active site. Asp177, conserved in all PP(i) PFKs, negates the binding of the alpha-phosphate group of ATP and likely contacts the essential Mg(2+) cation via a water molecule. Asn181 blocks the binding of the adenine moiety of ATP. Lys203 hydrogen bonds to a sulfate anion that likely mimics PP(i) substrate binding.  (+info)

Compensation for nucleotide bias in a genome by representation as a discrete channel with noise. (54/1041)

MOTIVATION: Calculation of the information content of motifs in genomes highly biased in nucleotide composition is likely to lead to overestimates of the amount of useful information in the motif. Calculating relative information can compensate for biases, however the resulting information content is the amount seen by an observer and not by a macromolecule binding to the motif. The latter is needed to calculate the discriminatory power of the motif and to compare motifs between species. RESULTS: By treating a biased genome as a discrete channel with noise, in accordance with Shannon Information Theory, we were able to remove both 'Distortion' and 'Noise' from the motif and recover a more instructive biological 'signal.' A Java application, LogoPaint, was developed to remove nucleotide bias distortion and triplet frequency noise from motifs, calculate information content and present the motif as a logo. We demonstrate how this technique can 'unmask' motifs in the translation initiation regions of bacteria that are obscured by strong sequence biases. AVAILABILITY: LogoPaint is available to all users from the authors as an executable JAR file. Source code is available by arrangement.  (+info)

Reassessment of a midwestern Lyme disease focus for Borrelia burgdorferi and the human granulocytic ehrlichiosis agent. (55/1041)

Previous studies from the late 1980s defined the risk of human Lyme disease by determining the prevalence of Borrelia burgdorferi infection in Ixodes scapularis ticks and Peromyscus sp. mice captured from areas around La Crosse, Wis. High percentages of B. burgdorferi-infected I. scapularis ticks and P. leucopus mice were common in areas located north of Interstate 90 but were not detected in areas south of this major east-west thoroughfare. In this study, we reevaluated the extent of B. burgdorferi infection. High percentages of mice captured from sites north of the interstate were still infected with B. burgdorferi. In addition, B. burgdorferi was recovered from 12 (67%) of 18 mice captured from a site well south of the highway. However, none of 104 mice or 713 I. scapularis ticks captured from the study sites were infected with Ehrlichia spp. The results confirmed the continued high risk for humans to contract infection with B. burgdorferi and the significant southward expansion of the area in which Lyme disease is endemic. In contrast, the risk of acquiring human granulocytic ehrlichiosis remains minimal despite the abundance of appropriate vector ticks and reservoir rodents.  (+info)

Murine Lyme arthritis development mediated by p38 mitogen-activated protein kinase activity. (56/1041)

Borrelia burgdorferi, the Lyme disease agent, causes joint inflammation in an experimental murine model. Inflammation occurs, in part, due to the ability of B. burgdorferi to induce the production of proinflammatory cytokines and a strong CD4(+) T helper type 1 response. The mechanisms by which spirochetes induce these responses are not completely known, although transcription factors, such as NF-kappa B in phagocytic cells, initiate the proinflammatory cytokine burst. We show here that the mitogen-activated protein (MAP) kinase of 38 kDa (p38 MAP kinase) is involved in the proinflammatory cytokine production elicited by B. burgdorferi Ags in phagocytic cells and the development of murine Lyme arthritis. B. burgdorferi Ags activated p38 MAP kinase in vitro, and the use of a specific inhibitor repressed the spirochete-induced production of TNF-alpha. The infection of mice that are deficient for a specific upstream activator of the kinase, MAP kinase kinase 3, resulted in diminished proinflammatory cytokine production and the development of arthritis, without compromising the ability of CD4(+) T cells to respond to borrelial Ags or the production of specific Abs. Overall, these data indicated that the p38 MAP kinase pathway plays an important role in B. burgdorferi-elicited inflammation and point to potential new therapeutic approaches to the treatment of inflammation induced by the spirochete.  (+info)