ResT, a telomere resolvase encoded by the Lyme disease spirochete. (33/1041)

The genus Borrelia includes the causative agents of Lyme disease and relapsing fever. An unusual feature of these bacteria is a segmented genome consisting mostly of a number of linear DNA molecules with covalently closed hairpin ends or telomeres. In this study we show that the BBB03 locus encodes the B. burgdorferi telomere resolvase, ResT. The purified protein catalyzes telomere resolution in vitro through a unique reaction: breakage of two phosphodiester bonds in a single DNA duplex (one on each strand) and joining of each end with the opposite DNA strand to form covalently closed hairpin telomeres. Telomere resolution by ResT occurs through a two-step transesterification reaction involving the formation of a covalent protein-DNA intermediate at a position three nucleotides from the axis of symmetry in each strand of the substrate.  (+info)

Species-specific serodiagnosis of Lyme arthritis and neuroborreliosis due to Borrelia burgdorferi sensu stricto, B. afzelii, and B. garinii by using decorin binding protein A. (34/1041)

The antigenic potential of decorin binding protein A (DbpA) was evaluated in serodiagnosis of human Lyme borreliosis (LB). The dbpA was cloned and sequenced from the three pathogenic Borrelia species common in Europe. Sequence analysis revealed high interspecies heterogeneity. The identity of the predicted amino acid sequences was 43 to 62% among Borrelia burgdorferi sensu stricto, B. afzelii, and B. garinii. The respective recombinant DbpAs (rDbpAs) were produced and tested as antigens by Western blotting and enzyme-linked immunosorbent assay (ELISA). One hundred percent of patients with neuroborreliosis (NB) and 93% of patients with Lyme arthritis (LA) reacted positively. Sera from the majority of patients reacted with one rDbpA only and had no or low cross-reactivity to other two variant proteins. In patients with culture-positive erythema migrans (EM), the sensitivity of rDbpA immunoglobulin G (IgG) or IgM ELISA was low. The DbpA seems to be a sensitive and specific antigen for the serodiagnosis of LA or NB, but not of EM, provided that variants from all three pathogenic borrelial species are included in the combined set of antigens.  (+info)

DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. (35/1041)

DNA microarrays were used to survey the adaptive genetic responses of Borrelia burgdorferi (Bb) B31, the Lyme disease spirochete, when grown under conditions analogous to those found in unfed ticks (UTs), fed ticks (FTs), or during mammalian host adaptation (Bb in dialysis membrane chambers implanted in rats). Microarrays contained 95.4% of the predicted B31 genes, 150 (8.6%) of which were differentially regulated (changes of > or = 1.8-fold) among the three growth conditions. A substantial proportion (46%) of the differentially regulated genes encoded proteins with predicted export signals (29% from predicted lipoproteins), emphasizing the importance to Bb of modulating its extracellular proteome. For B31 cultivated at the more restrictive UT condition, microarray data provided evidence of a bacterial stringent response and factors that restrict cell division. A large proportion of genes were responsive to the FT growth condition, wherein increased temperature and reduced pH were prominent environmental parameters. A surprising theme, supported by cluster analysis, was that many of the gene expression changes induced during the FT growth condition were transient and largely tempered as B31 adapted to the mammalian host, suggesting that once Bb gains entry and adapts to mammalian tissues, fewer differentially regulated genes are exploited. It therefore would seem that although widely dissimilar, the UT and dialysis membrane chamber growth conditions promote more static patterns of gene expression in Bb. The microarray data thus provide a basis for formulating new testable hypotheses regarding the life cycle of Bb and attaining a more complete understanding of many aspects of Bb's complex parasitic strategies.  (+info)

Occupational risk of Lyme disease: an epidemiological review. (36/1041)

Lyme disease is the most common vector borne disease in the United States. Since the early 1980s, a large body of literature has evaluated the occupational risk of Lyme disease. The availability of a new vaccine to prevent Lyme disease makes it necessary for occupational health professionals to make decisions regarding the occupational risk of the disease among employees.  (+info)

An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. (37/1041)

Borrelia burgdorferi, the Lyme disease spirochete, persistently infects mammalian hosts despite the development of strong humoral responses directed against the pathogen. Here we describe a novel mechanism of immune evasion by B. burgdorferi. In immunocompetent mice, spirochetes that did not express ospC (the outer-surface protein C gene) were selected within 17 d after inoculation, concomitantly with the emergence of anti-OspC antibody. Spirochetes with no detectable OspC transcript that were isolated from immunocompetent mice reexpressed ospC after they were either cultured in vitro or transplanted to naive immunocompetent mice, but not in OspC-immunized mice. B. burgdorferi persistently expressed ospC in severe combined immune-deficient (SCID) mice. Passive immunization of B. burgdorferi-infected SCID mice with an anti-OspC monoclonal antibody selectively eliminated ospC-expressing spirochetes but did not clear the infection. OspC-expressing spirochetes reappeared in SCID mice after the anti-OspC antibody was eliminated. We submit that selection of surface-antigen nonexpressers is an immune evasion mechanism that contributes to spirochetal persistence.  (+info)

Approaches toward the directed design of a vaccine against Borrelia burgdorferi. (38/1041)

The overall efficacy of a recombinant vaccine for Lyme disease that is effective worldwide will depend upon the selection of one or more immunoprotective target(s) and the frequency of genetic variation, which can alter the antigenicity of the immunoprotective epitopes of the target proteins. Careful delineation of these protective epitopes on target antigens is essential for the development of vaccine candidates as well as for understanding the limitations of such vaccines. Structural models of these targets will provide critical information about conformation and specific residue surface accessibility for defining protective epitopes. Co-crystal structures with Fab fragments of protective antibodies will further delineate critical antigen surfaces. Population genetics will provide vital information on the heterogeneity of these proteins. Detailed epitope mapping will provide the information needed for the bioengineering of antigens needed to expand the specificity of a candidate vaccine.  (+info)

Impaired bactericidal activity and host resistance to Listeria monocytogenes and Borrelia burgdorferi in rats administered an acute oral regimen of ethanol. (39/1041)

A rat model was used to examine how ethanol ingestion may interfere with antimicrobial immunity both in vitro and in vivo. Nonimmune Long-Evans rats were given a short-course treatment orally with excessive amounts of ethanol. Their spleens were removed at the time of sacrifice, and separate spleen cell suspensions were prepared and tested in vitro for their ability to kill two bacterial pathogens, Listeria monocytogenes and Borrelia burgdorferi. After the bacteria were mixed separately with various concentrations of spleen cells, it was found that spleen cells from the ethanol-treated rats killed fewer bacteria than matching pair-fed controls, based on counts of the number of cultured CFU (for Listeria) or based on microscopic examination (for Borrelia). For the in vivo studies, ethanol-treated and control rats were infected intraperitoneally with Listeria, and then, 1 to 3 days later, they were assessed for systemic infection based on the numbers of organisms present in their livers and spleens. Numbers of bacterial CFU for both organs were significantly higher in the group fed ethanol for the first 2 days after listerial challenge. These results support the concept that acute exposure to high levels of ethanol can impair host defense mechanisms, especially those expressed at the cellular level, which could lead to increased susceptibility to certain types of infections.  (+info)

Lyme disease and current aspects of immunization. (40/1041)

Lyme disease is a tick-borne multisystem disease that affects primarily the skin, nervous system, heart and joints. At least three species of Borrelia burgdorferi sensu lato, namely Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii, can cause the disease. This review will focus mainly on the pathophysiology of Lyme arthritis, the long-term outcome of Lyme disease, and the recently licensed vaccine against Lyme disease.  (+info)