Stereoselective assembly of a 1,3-diene via coupling between an allenic acetate and a (B)-alkylborane: synthetic studies on amphidinolide B1. (17/130)

The preparation of three fragments for the total synthesis of amphidinolide B1 has been described. The C16 stereochemistry was set by asymmetric allylic alkylation. C21 and C25 stereogenic centers were set by an enantioselective/diastereoselective double allylation reaction. The C9 configuration was set by an asymmetric heteroene reaction. A differentially substituted stereodefined 1,3-diene iodide was synthesized by iodide-mediated S(N)2' reaction. A novel stereoselective method to assemble a 1,3-diene by coupling an allenic acetate and (B)-alkylborane is also reported. [structure: see text]  (+info)

From nonpeptide toward noncarbon protease inhibitors: metallacarboranes as specific and potent inhibitors of HIV protease. (18/130)

HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a K(i) value of 2.2 nM and a submicromolar EC(50) in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 A resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3' subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition.  (+info)

Rearrangements in icosahedral boranes and carboranes revisited. (19/130)

The structure, stability, and intermolecular rearrangements between ortho-, meta-, and para-C2B10H12 and were investigated using the hybrid density functional B3LYP/6-31G(d) for vibrational frequencies, as well as B3LYP/6-311+G(2d,p) for single-point electronic energies. The general trends in free energies of rearrangement between ortho-C2B10H12 to meta-C2B10H12 and meta-C2B10H12 to para-C2B10H12 presented here are consistent with experimental reaction temperatures. In addition, the majority of the rearrangements can be viewed in terms of concerted diamond-square-diamond steps and triangular face rotations.  (+info)

Periodic trends and easy estimation of relative stabilities in 11-vertex nido-p-block-heteroboranes and -borates. (20/130)

Density functional theory computations were carried out for 11-vertex nido-p-block-hetero(carba)boranes and -borates containing silicon, germanium, tin, arsenic, antimony, sulfur, selenium and tellurium heteroatoms. A set of quantitative values called "estimated energy penalties" was derived by comparing the energies of two reference structures that differ with respect to one structural feature only. These energy penalties behave additively, i.e., they allow us to reproduce the DFT-computed relative stabilities of 11-vertex nido-heteroboranes in general with good accuracy and to predict the thermodynamic stabilities of unknown structures easily. Energy penalties for neighboring heteroatoms (HetHet and HetHet') decrease down the group and increase along the period (indirectly proportional to covalent radii). Energy penalties for a five- rather than four-coordinate heteroatom, [Het(5k)(1) and Het(5k)(2)], generally, increase down group 14 but decrease down group 16, while there are mixed trends for group 15 heteroatoms. The sum of HetHet' energy penalties results in different but easily predictable open-face heteroatom positions in the thermodynamically most stable mixed heterocarbaboranes and -borates with more than two heteroatoms.  (+info)

Case report: the clinical toxicity of dimethylamine borane. (21/130)

CONTEXT: Dimethylamine borane (DMAB) is a reducing agent used in nonelectric plating of semiconductors. Exposures are usually through occupational contact. We report here four cases of people who suffered from work-related exposure to DMAB. CASE PRESENTATION: Three patients exposed to DMAB decontaminated immediately by drinking a lot of water; they reported dizziness, nausea, diarrhea 6-8 hr later. The other patient did not decontaminate at once, and he suffered from more severe symptoms, including dizziness, nausea, limb numbness, slurred speech, irritable mood, and ataxia 13 hr later. Magnetic resonance imaging showed symmetric lesions with hyperintensity on T2WI and FLAIR in bilateral cerebellar dantate nuclei. This patient was readmitted to the hospital due to difficulty in walking and climbing 18 days after exposure. Lower leg weakness and drop foot were found bilaterally. A nerve conduction study revealed polyneuropathy with motor-predominant axonal degeneration. This patient receives regular outpatient followups and still walks with a clumsy gait and has difficulty with hand-grasping activity. DISCUSSION: This case study demonstrates that DMAB is highly toxic to humans through any route of exposure, and dermal absorption is the major route of neurotoxicity. DMAB induces acute cortical and cerebellar injuries and delayed peripheral neuropathy. RELEVANCE: Further investigation of the toxic mechanism of DMAB is warranted. Early decontamination with copious water is the best current treatment for exposure to DMAB.  (+info)

Histopathological changes of testes and eyes by neutron irradiation with boron compounds in mice. (22/130)

This study was performed to investigate the biological effects of boron neutron capture therapy (BNCT) on the testes and eyes in mice using HANARO Nuclear Reactor, Korea Atomic Energy Research Institute. BNCT relies on the high capacity of 10B in capturing thermal neutrons. Sodium borocaptate (BSH, 75 ppm, iv) and boronophenylalanine (BPA, 750 ppm, ip) have been used as the boron delivery agents. Mice were irradiated with neutron (flux: 1.036739E +09, Fluence 9.600200E+12) by lying flat pose for 30 (10 Gy) or 100 min (33 Gy) with or without boron carrier treatment. In 45 days of irradiation, histopathological changes of the testes and eyes were examined. Thirty-three Gy neutron irradiation for 100 min induced testicular atrophy in which some of seminiferous tubules showed complete depletion of spermatogenic germ cells. Lens epithelial cells and lens fiber were swollen and showed granular changes in an exposure time dependent manner. However, boron carrier treatment had no significant effect on the lesions. These results suggest that the examination of histopathological changes of lens and testis can be used as "biological dosimeters" for gauging radiation responses and the HANARO Nuclear Reactor has sufficient capacities for the BNCT.  (+info)

Palladium-catalyzed enantioselective C-3 allylation of 3-substituted-1H-indoles using trialkylboranes. (23/130)

We have developed a new enantioselective C-3 allylation of 3-substituted indoles using allyl alcohol and trialkylboranes. Asymmetric syntheses of 3,3-disubstituted indolines and indolenines in enantiomeric excesses up to 90% have been achieved using the bulky borane 9-BBN-C6H13 as the promoter of the reaction. The dependence of the selectivity on the nature of the borane suggests that the boron reagent has a role beyond promoting ionization of the allyl alcohol. A protocol for oxidation of indolenines to oxindoles has also been developed and led to a formal synthesis of (-)-phenserine.  (+info)

High potency silencing by single-stranded boranophosphate siRNA. (24/130)

In RNA interference (RNAi), double-stranded short interfering RNA (ds-siRNA) inhibits expression from complementary mRNAs. Recently, it was demonstrated that short, single-stranded antisense RNA (ss-siRNA) can also induce RNAi. While ss-siRNA may offer several advantages in both clinical and research applications, its overall poor activity compared with ds-siRNA has prevented its widespread use. In contrast to the poor gene silencing activity of native ss-siRNA, we found that the silencing activity of boranophosphate-modified ss-siRNA is comparable with that of unmodified ds-siRNA. Boranophosphate ss-siRNA has excellent maximum silencing activity and is highly effective at low concentrations. The silencing activity of boranophosphate ss-siRNA is also durable, with significant silencing up to 1 week after transfection. Thus, we have demonstrated that boranophosphate-modified ss-siRNA can silence gene expression as well as native ds-siRNA, suggesting that boranophosphate-modified ss-siRNAs should be investigated as a potential new class of therapeutic agents.  (+info)