The efficacy of various alloplastic bone grafts on the healing of rat calvarial defects. (41/454)

The objective of this study was to determine the relative efficacy of currently available alloplastic bone repair materials in the healing of rat calvarial defects histologically, histomorphometrically and biochemically. A representative material was selected from six major classes of bone repair materials and placed in 4 mm diameter calvarial defects of 6-week-old male Sprague-Dawley rats (five animals in the control and each of the six experimental groups). The outcomes were assessed after 2 months for alkaline phosphatase (ALP) activity and after 4 months of healing for histomorphometry. The tested alloplastic implant materials did not significantly increase ALP activity or the amount of new bone formation in the healing of rat calvarial defects relative to controls (P > 0.05). However, when the implant material itself was included in the analysis, significant differences were observed (P < 0.05). Additionally, the tested materials varied in their ability to bridge the bony defect. These data suggest that the rate of bone formation cannot be increased beyond control levels, rather the advantage of implant materials may be in their efficiency in filling the defect through incorporation of the material into the healing site and rapidly bridging the wound.  (+info)

The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta-analysis. (42/454)

BACKGROUND: Periodontal disease results in the loss of the attachment apparatus. In the last three decades, an increasing effort has been placed on seeking procedures and materials to promote the regeneration of this tissue. The aim of this paper is to evaluate the effect of enamel matrix derivative (EMD) during regenerative procedures. In addition, a meta-analysis is presented regarding the clinical results during regeneration with EMD, to gain evidence as to what can be accomplished following treatment of intrabony defects with EMD in terms of probing depth reduction, clinical attachment level gain, defect fill (using re-entry studies), and radiographic parameters. METHODS: The review includes in vitro and in vivo studies as well as human case reports, clinical comparative trials, and histologic findings. In addition, a meta-analysis is presented regarding the regenerative clinical results. For this purpose, we used 28 studies-including 955 intrabony defects treated with EMD that presented baseline and final data on probing depth, clinical attachment level (CAL) gain, or bone gain-to calculate weighted mean changes in the different parameters. The selected studies were pooled from the MEDLINE database at the end of May, 2003. RESULTS: The meta-analysis of intrabony defects treated with EMD resulted in a mean initial probing depth of 7.94 +/- 0.05 mm that was reduced to 3.63 +/- 0.04 mm (p = 0.000). The mean clinical attachment level changed from 9.4 +/- 0.06 mm to 5.82 +/- 0.07 mm (p = 0.000). These results were significantly better than the results obtained for either open-flap debridement (OFD) or guided tissue regeneration (GTR). In contrast, histologically, GTR is more predictable than EMD in terms of bone and cementum formation. No advantage was found for combining EMD and GTR. Xenograft, or EMD and xenograft, yielded inferior results compared with EMD alone, but a limited number of studies evaluated this issue. Promising results were noted for the combination of allograft materials and EMD. CONCLUSIONS: EMD seems to be safe, was able to regenerate lost periodontal tissues in previously diseased sites based on clinical parameters, and was better than OFD or GTR. Its combination with allograft materials may be of additional benefit but still needs to be further investigated.  (+info)

A 2-year follow-up pilot study evaluating the safety and efficacy of op-1 putty (rhbmp-7) as an adjunct to iliac crest autograft in posterolateral lumbar fusions. (43/454)

The ability of bone morphogenetic proteins (BMPs) to induce bone formation has led to a multitude of investigations into their use as bone graft substitutes in spinal surgery. The purpose of this multi-center clinical pilot study was to evaluate the safety and efficacy of BMP-7 (osteogenic protein 1, OP-1), in the form of a putty, combined with autograft for intertransverse process fusion of the lumbar spine in patients with symptomatic spinal stenosis and degenerative spondylolisthesis following spinal decompression. Twelve patients with spinal stenosis and degenerative lumbar spondylolisthesis underwent a laminectomy and partial or complete medial facetectomy as required for decompression of the neural elements, followed by an intertransverse process fusion by placing iliac crest autograft and OP-1 putty between the decorticated transverse processes. No instrumentation was used. Patients were followed clinically using the Oswestry scale and SF-36 outcome forms, and radiographically using static and dynamic radiographs to assess their fusion status over a 2-year period. Independent and blinded radiologists assessed the films for the presence of bridging bone between the transverse processes and measured translation and angulation on dynamic films using digital calipers. Radiographic outcome was compared to a historical control (autograft alone fusion without instrumentation for the treatment of degenerative spondylolisthesis). All adverse events were recorded prospectively. The results showed eight of the nine evaluable patients (89%) obtained at least a 20% improvement in their preoperative Oswestry score, while five of ten patients (50%) with radiographic follow-up achieved a solid fusion by the criteria used in this study. Bridging bone on the anteroposterior film was observed in seven of the ten patients (70%). No systemic toxicity, ectopic bone formation, recurrent stenosis or other adverse events related to the OP-1 putty implant were observed. A successful fusion was observed in slightly over half the patients in this study, using stringent criteria without adjunctive spinal instrumentation. This study did not demonstrate the statistical superiority of OP-1 combined with autograft over an autograft alone historical control, in which the fusion rate was 45%. There were no adverse events related to the OP-1 putty implant in this study, which supports findings in other studies suggesting the safety of bone morphogenetic proteins in spinal surgery.  (+info)

TGF-beta1-enhanced TCP-coated sensate scaffolds can detect bone bonding. (44/454)

Porous polybutylene terephthalate (PBT) scaffold systems were tested as orthopedic implants to determine whether these scaffolds could be used to detect strain transfer following bone growth into the scaffold. Three types of scaffold systems were tested: porous PBT scaffolds, porous PBT scaffolds with a thin beta-tricalcium phosphate coating (LC-PBT), and porous PBT scaffolds with the TCP coating vacuum packed into the scaffold pores (VI-PBT). In addition, the effect of applying TGF-beta1 to scaffolds as an enhancement was examined. The scaffolds were placed onto the femora of rats and left in vivo for 4 months. The amount of bone ingrowth and the strain transfer through various scaffolds was evaluated by using scanning electron microscopy, histology, histomorphometry, and cantilever bend testing. The VI-PBT scaffold showed the highest and most consistent degree of mechanical interaction between bone and scaffold, providing strain transfers of 68.5% (+/-20.6) and 79.2% (+/-8.7) of control scaffolds in tension and compression, respectively. The strain transfer through the VI-PBT scaffold decreased to 29.1% (+/-24.3) and 30.4% (+/-25.8) in tension and compression when used with TGF-beta1. TGF-beta1 enhancement increased the strain transfer through LC-PBT scaffolds in compression from 9.4% (+/-8.7) to 49.7% (+/-31.0). The significant changes in mechanical strain transfer through LC-PBT and VI-PBT scaffolds correlated with changes in bone ingrowth fraction, which was increased by 39.6% in LC-PBT scaffolds and was decreased 21.3% in VI-PBT scaffolds after TGF-beta1 enhancement. Overall, the results indicate that strain transfer through TCP-coated PBT scaffolds correlate with bone ingrowth after implantation, making these instrumented scaffolds useful for monitoring bone growth by monitoring strain transfer.  (+info)

Methyl methacrylate cranioplasty. (45/454)

We conducted a prospective study in order to audit our experience of repairing cranial defects using Methyl methacrylate. This included a total of 49 patients undergoing cranioplasty using methyl methacrylate, of which 45 were males and 4 females. The age of patients at the time of surgery ranged from 16 to 40 years old, with an average of 24 years. Malays were the majority (67%), followed by Chinese (23%) and Indian (10%). Cranial defects were mainly caused by motor vehicle accident (94%), while gunshot wounds, industrial accidents and tumours, each contribute 2%. Bone flaps were commonly removed during previous surgery related to traumatic subdural haemorrhage (33%), contusion (21%) and intracerebral haemorrhage (14%). The size of cranial defects ranged from 28 cm2 to 440 cm2, with an average of 201 cm2. Most had right sided (55%) and lateral defects [temporoparietal (52%) followed by temporal (16%), frontal (16%), frontotemporal (14%) and occipital (2%)]. Duration of surgery ranged from 70 to 275 minutes, with an average of 135 minutes. Nine of 12 patients (75%) with neurological disability had some improvement while 85% of symptomatic patients had symptoms improvement after cranioplasty. The infection rate in this series was 4%.  (+info)

Tricalcium-phosphate and hydroxyapatite bone-graft extender for use in impaction grafting revision surgery. An in vitro study on human femora. (46/454)

Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have been developed to minimise the use of donor bone. In a human cadaver model we have evaluated the surgical and mechanical feasibility of a TCP/HA bone-graft extender during impaction grafting revision surgery. A TCP/HA allograft mix increased the risk of producing a fissure in the femur during the impaction procedure, but provided a higher initial mechanical stability when compared with bone graft alone. The implications of the use of this type of graft extender in impaction grafting revision surgery are discussed.  (+info)

Selective retention of bone marrow-derived cells to enhance spinal fusion. (47/454)

Connective tissue progenitors can be concentrated rapidly from fresh bone marrow aspirates using some porous matrices as a surface for cell attachment and selective retention, and for creating a cellular graft that is enriched with respect to the number of progenitor cells. We evaluated the potential value of this method using demineralized cortical bone powder as the matrix. Matrix alone, matrix plus marrow, and matrix enriched with marrow cells were compared in an established canine spinal fusion model. Fusions were compared based on union score, fusion mass, fusion volume, and by mechanical testing. Enriched matrix grafts delivered a mean of 2.3 times more cells and approximately 5.6 times more progenitors than matrix mixed with bone marrow. The union score with enriched matrix was superior to matrix alone and matrix plus marrow. Fusion volume and fusion area also were greater with the enriched matrix. These data suggest that the strategy of selective retention provides a rapid, simple, and effective method for concentration and delivery of marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting procedures in various clinical settings.  (+info)

The compatibility of ceramic bone graft substitutes as allograft extenders for use in impaction grafting of the femur. (48/454)

This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens. There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures.  (+info)