Convergence of transforming growth factor-beta and vitamin D signaling pathways on SMAD transcriptional coactivators. (1/237)

Cell proliferation and differentiation are regulated by growth regulatory factors such as transforming growth factor-beta (TGF-beta) and the liphophilic hormone vitamin D. TGF-beta causes activation of SMAD proteins acting as coactivators or transcription factors in the nucleus. Vitamin D controls transcription of target genes through the vitamin D receptor (VDR). Smad3, one of the SMAD proteins downstream in the TGF-beta signaling pathway, was found in mammalian cells to act as a coactivator specific for ligand-induced transactivation of VDR by forming a complex with a member of the steroid receptor coactivator-1 protein family in the nucleus. Thus, Smad3 may mediate cross-talk between vitamin D and TGF-beta signaling pathways.  (+info)

A Meis family protein caudalizes neural cell fates in Xenopus. (2/237)

A homologue of the Drosophila homothorax (hth) gene, Xenopus Meis3 (XMeis3), was cloned from Xenopus laevis. XMeis3 is expressed in a single stripe of cells in the early neural plate stage. By late neurula, the gene is expressed predominantly in rhombomeres two, three and four, and in the anterior spinal cord. Ectopic expression of RNA encoding XMeis3 protein causes anterior neural truncations with a concomitant expansion of hindbrain and spinal cord. Ectopic XMeis3 expression inhibits anterior neural induction in neuralized animal cap ectoderm explants without perturbing induction of pan-neural markers. In naive animal cap ectoderm, ectopic XMeis3 expression activates transcription of the posteriorly expressed neural markers, but not pan-neural markers. These results suggest that caudalizing proteins, such as XMeis3, can alter A-P patterning in the nervous system in the absence of neural induction. Regionally expressed proteins like XMeis3 could be required to overcome anterior signals and to specify posterior cell fates along the A-P axis.  (+info)

Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. (3/237)

The cytokines LIF (leukemia inhibitory factor) and BMP2 (bone morphogenetic protein-2) signal through different receptors and transcription factors, namely STATs (signal transducers and activators of transcription) and Smads. LIF and BMP2 were found to act in synergy on primary fetal neural progenitor cells to induce astrocytes. The transcriptional coactivator p300 interacts physically with STAT3 at its amino terminus in a cytokine stimulation-independent manner, and with Smad1 at its carboxyl terminus in a cytokine stimulation-dependent manner. The formation of a complex between STAT3 and Smad1, bridged by p300, is involved in the cooperative signaling of LIF and BMP2 and the subsequent induction of astrocytes from neural progenitors.  (+info)

A functional bone morphogenetic protein system in the ovary. (4/237)

Bone morphogenetic proteins (BMPs) comprise a large group of polypeptides in the transforming growth factor beta superfamily with essential physiological functions in morphogenesis and organogenesis in both vertebrates and invertebrates. At present, the role of BMPs in the reproductive system of any species is poorly understood. Here, we have established the existence of a functional BMP system in the ovary, replete with ligand, receptor, and novel cellular functions. In situ hybridization histochemistry identified strong mRNA labeling for BMP-4 and -7 in the theca cells and BMP receptor types IA, IB, and II in the granulosa cells and oocytes of most follicles in ovaries of normal cycling rats. To explore the paracrine function of this BMP system, we examined the effects of recombinant BMP-4 and -7 on FSH (follicle-stimulating hormone)-induced rat granulosa cytodifferentiation in serum-free medium. Both BMP-4 and -7 regulated FSH action in positive and negative ways. Specifically, physiological concentrations of the BMPs enhanced and attenuated the stimulatory action of FSH on estradiol and progesterone production, respectively. These effects were dose- and time-dependent. Furthermore, the BMPs increased granulosa cell sensitivity to FSH. Thus, BMPs have now been identified as molecules that differentially regulate FSH-dependent estradiol and progesterone production in a way that reflects steroidogenesis during the normal estrous cycle. As such, it can be hypothesized that BMPs might be the long-sought "luteinization inhibitor" in Graafian follicles during their growth and development.  (+info)

Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. (5/237)

The stromal cell line ST2, derived from mouse bone marrow, differentiated into osteoblast-like cells in response to ascorbic acid. Ascorbic acid induced alkaline phosphatase (ALPase) activity, the expression of mRNAs for proteins that are markers of osteoblastic differentiation, the deposition of calcium, and the formation of mineralized nodules by ST2 cells. We investigated the mechanism whereby ascorbic acid induced the differentiation of ST2 cells. Inhibitors of the formation of collagen triple helices completely blocked the effects of ascorbic acid on ST2 cells, an indication that matrix formation by type I collagen is essential for the induction of osteoblastic differentiation of ST2 cells by ascorbic acid. We furthermore examined the effects of bone morphogenetic proteins (BMPs) on the differentiation of ST2 cells induced by ascorbic acid. Ascorbic acid had no effect on the expression of mRNAs for BMP-4 and the BMP receptors. However, a soluble form of BMP receptor IA inhibited the induction of ALPase activity by ascorbic acid. These results suggest that ascorbic acid might promote the differentiation of ST2 cells into osteoblast-like cells by inducing the formation of a matrix of type I collagen, with subsequent activation of the signaling pathways that involve BMPs.  (+info)

A role for the homeobox gene Xvex-1 as part of the BMP-4 ventral signaling pathway. (6/237)

BMP-4 is believed to play a central role in the patterning of the mesoderm by providing a strong ventral signal. As part of this ventral patterning signal, BMP-4 has to activate a number of transcription factors to fulfill this role. Among the transcription factors regulated by BMP-4 are the Xvent and the GATA genes. A novel homeobox gene has been isolated termed Xvex-1 which represents a new class of homeobox genes. Transcription of Xvex-1 initiates soon after the midblastula transition. Xvex-1 transcripts undergo spatial restriction from the onset of gastrulation to the ventral marginal zone, and the transcripts will remain in this localization including at the tailbud stage in the proctodeum. Expression of Xvex-1 during gastrula stages requires normal BMP-4 activity as evidenced from the injection of BMP-4, Smad1, Smad5 and Smad6 mRNA and antisense BMP-4 RNA. Xvex-1 overexpression ventralizes the Xenopus embryo in a dose dependent manner. Partial loss of Xvex-1 activity induced by antisense RNA injection results in the dorsalization of embryos and the induction of secondary axis formation. Xvex-1 can rescue the effects of overexpressing the dominant negative BMP receptor. These results place Xvex-1 downstream of BMP-4 during gastrulation and suggest that it represents a novel homeobox family in Xenopus which is part of the ventral signaling pathway.  (+info)

Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. (7/237)

Periodic patterning is a fundamental organizing process in biology. Using a feather reconstitution assay, we traced back to the initial stage of the patterning process. Cells started from an equivalent state and self-organized into a periodic pattern without previous cues or sequential propagation. When different numbers of dissociated mesenchymal cells were confronted with a piece of same-sized epithelium, the size of feather primordia remained constant, not the number or interbud spacing, suggesting size determination is intrinsic to dissociated cells. Increasing bone morphogenetic protein (BMP) receptor expression in mesenchymal cells decreased the size of primordia while antagonizing the BMP pathway with Noggin increased the size of primordia. A threshold number of mesenchymal cells with a basal level of adhesion molecules such as NCAM were sufficient to trigger the patterning process. The process is best visualized by the progressive restriction of beta-catenin transcripts in the epidermis. Therefore, feather size, number and spacing are modulated through the available morphogen ligands and receptors in the system.  (+info)

Involvement of the small GTPases XRhoA and XRnd1 in cell adhesion and head formation in early Xenopus development. (8/237)

The Rho family of small GTPases regulates a variety of cellular functions, including the dynamics of the actin cytoskeleton, cell adhesion, transcription, cell growth and membrane trafficking. We have isolated the first Xenopus homologs of the Rho-like GTPases RhoA and Rnd1 and examined their potential roles in early Xenopus development. We found that Xenopus Rnd1 (XRnd1) is expressed in tissues undergoing extensive morphogenetic changes, such as marginal zone cells involuting through the blastopore, somitogenic mesoderm during somite formation and neural crest cells. XRnd1 also causes a severe loss of cell adhesion in overexpression experiments. These data and the expression pattern suggest that XRnd1 regulates morphogenetic movements by modulating cell adhesion in early embryos. Xenopus RhoA (XRhoA) is a potential XRnd1 antagonist, since overexpression of XRhoA increases cell adhesion in the embryo and reverses the disruption of cell adhesion caused by XRnd1. In addition to the potential roles of XRnd1 and XRhoA in the regulation of cell adhesion, we find a role for XRhoA in axis formation. When coinjected with dominant-negative BMP receptor (tBR) in the ventral side of the embryo, XRhoA causes the formation of head structures resembling the phenotype seen after coinjection of wnt inhibitors with dominant-negative BMP receptor. Since dominant-negative XRhoA is able to reduce the formation of head structures, we propose that XRhoA activity is essential for head formation. Thus, XRhoA may have a dual role in the embryo by regulating cell adhesion properties and pattern formation.  (+info)