The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. (17/115)

In the mammalian ovary, great interest in the expression and function of the bone morphogenetic protein (BMP) family has been recently generated from evidence of their critical role in determining folliculogenesis and female fertility. Despite extensive work, there is a need to understand the cellular sites of expression of these important regulatory molecules, and how their gene expression changes within the basic ovary cell types through the cycle. Here we have performed a detailed in situ hybridization analysis of the spatial and temporal expression patterns of the BMP ligands (BMP-2, -3, -3b, -4, -6, -7, -15), receptors (BMPR-IA, -IB, -II), and BMP antagonist, follistatin, in rat ovaries over the normal estrous cycle. We have found that: i) all of the mRNAs are expressed in a cell-specific manner in the major classes of ovary cell types (oocyte, granulosa, theca interstitial, theca externa, corpora lutea, secondary interstitial, vascular and ovary surface epithelium); and ii) most undergo dynamic changes during follicular and corpora luteal morphogenesis and histogenesis. The general principle to emerge from these studies is that the developmental programs of folliculogenesis (recruitment, selection, atresia), ovulation, and luteogenesis (luteinization, luteolysis) are accompanied by rather dramatic spatial and temporal changes in the expression patterns of these BMP genes. These results lead us to hypothesize previously unanticipated roles for the BMP family in determining fundamental developmental events that ensure the proper timing and developmental events required for the generation of the estrous cycle.  (+info)

Developmental and molecular aberrations associated with deterioration of oogenesis during complete or partial follicle-stimulating hormone receptor deficiency in mice. (18/115)

Targeted disruption of the mouse FSH receptor gene (FSH-R) that mediates the action of the FSH results in a gene dose-related ovarian phenotype in the developing as well as the adult animal. While null females (FORKO) are sterile, the haplo-insufficient mice experience early reproductive senescence. The purpose of this study was to first record changes in oocyte development in the null FORKO and haplo-insufficient mice. Oocyte growth is significantly retarded in the null mutants with thinner zona pellucida in preantral follicles, but thicker zona pellucida in secondary follicles. This morphometric change indicates developmental aberrations in coordination of the germ cell (oocyte) and the somatic granulosa cell (GC) compartments. Markers for primordial germ cell proliferation and oocyte growth, such as the c-Kit/Kit-ligand and bone morphogenetic protein-15 (BMP-15) were downregulated in both null and +/- ovaries, suggesting disrupted communication between oocyte and GCs. Extensive changes in the expression of other oocyte-specific gene products like the zona pellucida glycoproteins (zona pellucida A, B, and C) indicate major alteration in the extracellular matrix surrounding the germ cells. This led to leaky germ cells that allowed infiltration of somatic cells. These results show that the loss of FSH-R signaling alters the follicular environment, where oocyte-granulosa interactions are perturbed, creating an out-of-phase germ cell and somatic cell development. We believe that these data provide an experimental paradigm to explore the mechanisms responsible for preserving the structural integrity and quality of oocytes at different ages.  (+info)

GCNF-dependent repression of BMP-15 and GDF-9 mediates gamete regulation of female fertility. (19/115)

To determine the function of germ cell nuclear factor (GCNF) in female reproduction, we generated an oocyte-specific GCNF knockout mouse model (GCNF(fl/fl)Zp3Cre(+)). These mice displayed hypofertility due to prolonged diestrus phase of the estrous cycle and aberrant steroidogenesis. These reproductive defects were secondary to a primary defect in the oocytes, in which expression of the paracrine transforming growth factor-beta signaling molecules, bone morphogenetic protein 15 (BMP-15) and growth differentiation factor 9 (GDF-9), were up-regulated in GCNF(fl/fl)Zp3Cre(+) females at diestrus. This was a direct effect of GCNF, as molecular studies showed that GCNF bound to DR0 elements within the BMP-15 and GDF-9 gene promoters and repressed their reporter activities. Consistent with these findings, abnormal double-oocyte follicles, indicative of aberrant BMP-15/GDF-9 expression, were observed in GCNF(fl/fl)Zp3Cre(+) females. The Cre/loxP knockout of GCNF in the oocyte has uncovered a new regulatory pathway in ovarian function. Our results show that GCNF directly regulates paracrine communication between the oocyte and somatic cells by regulating the expression of BMP-15 and GDF-9, to affect female fertility.  (+info)

Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte-cumulus cell complex. (20/115)

Luteinizing hormone (LH) induces maturational processes in oocyte-cumulus cell complexes (OCC) of preovulatory follicles that include both resumption of meiosis in the oocyte and expansion (mucification) of the cumulus oophorus. Both processes require activation of mitogen-activated protein kinase (MAPK) in granulosa cells. Here, it is reported that inhibition of MAPK activation prevented gonadotropin-stimulated resumption of meiosis as well as the rise in expression of two genes whose products are necessary for normal cumulus expansion, Has2 and Ptgs2. However, inhibition of MAPK did not block gonadotropin-induced elevation of granulosa cell cAMP, indicating that the activation of MAPK required for inducing GVB and cumulus expansion is downstream of cAMP. Moreover, activation of MAPK in cumulus cells requires one or more paracrine factors from the oocyte to induce GVB and cumulus expansion; MAPK activation alone is not sufficient to initiate these maturational processes. This study demonstrates a remarkable interaction between the oocyte and cumulus cells that is essential for gonadotropin-induced maturational processes in OCC. By enabling gonadotropin-dependent MAPK activation in granulosa cells, oocytes promote the generation of a return signal from these cells that induces the resumption of meiosis. It also appears that an oocyte-dependent pathway downstream from oocyte-enabled activation of MAPK, and distinct from that promoting the resumption of meiosis, governs cumulus expansion.  (+info)

Stage-dependent effects of oocytes and growth differentiation factor 9 on mouse granulosa cell development: advance programming and subsequent control of the transition from preantral secondary follicles to early antral tertiary follicles. (21/115)

The development of an ovarian follicle requires a complex set of reciprocal interactions between the oocyte and granulosa cells in order for both types of cells to develop properly. These interactions are largely orchestrated by the oocyte via paracrine factors such as growth differentiation factor 9 (GDF9). To examine these interactions further, a study was conducted of the effects of oocytes at different stages of development on proteins synthesized by mouse granulosa cells during the transition of granulosa cells (GCs) from preantral, secondary (2 degrees ) follicles (2 degrees GCs) to mural granulosa cells (3 degrees GCs) of antral tertiary (3 degrees ) follicles. The ability of recombinant GDF9 to mimic the effects of oocytes was also determined. Effects were evaluated by high- resolution, two-dimensional protein gel electrophoresis coupled to computer-assisted, quantitative gel image analysis. Coculture of the 2 degrees GCs with growing oocytes (GOs) from 2 degrees follicles brought about many of the changes in granulosa cell phenotype associated with the 2 degrees to 3 degrees follicle transition. GDF9 likewise brought about many of these changes, but only a subset of GDF9-affected protein spots were also affected by coculture with GOs. Coculture of 2 degrees GCs with the nearly fully grown oocytes (FGOs) from 3 degrees follicles had a reduced effect on 2 degrees GC phenotype, in comparison with coculture with GOs. For some proteins, oocyte coculture or GDF9 treatment appeared to have opposite effects on 2 degrees GCs and 3 degrees GCs. Additional effects of GDF9 and oocytes were seen in cultures of 2 degrees GCs for proteins other than those that differed between untreated control 2 degrees and 3 degrees GCs. These results indicate that GOs and GDF9 can each induce 2 degrees GCs to shift their phenotype toward that of 3 degrees GCs. The ability of the oocyte to produce this effect is diminished with oocyte development. The transition in the GC phenotype promoted by oocytes appears stable because differences in 2 degrees GCs promoted by oocytes and GDF9 were observed in untreated 3 degrees GCs. We conclude that the influence of the oocyte on GCs changes with the progression of their development, and so too does the response of the GCs to the oocyte. Moreover, by acting on the 2 degrees GCs, GOs are able to influence stably the phenotype of 3 degrees GCs. Thus, at or near the 2 degrees to 3 degrees follicle transition, signals from the growing oocyte contribute to the development of the mural GC phenotype.  (+info)

Functional and molecular characterization of naturally occurring mutations in the oocyte-secreted factors bone morphogenetic protein-15 and growth and differentiation factor-9. (22/115)

Bone morphogenetic protein-15 (BMP-15) and growth and differentiation factor-9 (GDF-9) are oocyte-secreted factors that are critical local regulators of ovarian physiology. Recent studies have identified a number of mutations in these genes that cause increased fertility and infertility in heterozygous or homozygous ewes carrying the mutations, respectively. Interestingly, heterozygous ewes with a mutation in both BMP-15 and GDF-9 exhibit higher fertility than those having mutation in only one of the genes. Here, we have produced recombinant human BMP-15 and GDF-9 that carry the mutations identified in those sheep, i.e. I31D and S99I in BMP-15 and S77F in GDF-9. We found that when individually expressed, both BMP-15 mutations had no effect on the processing, secretion, and dimerization of the mature proteins or on the biological activity of the molecules. However, when mutant BMP-15 was co-expressed with wild-type GDF-9, the secretion of BMP-15 and GDF-9 was significantly reduced, suggesting that the mechanisms by which the BMP-15 mutations affect sheep fertility occurs at the level of protein secretion rather than dimerization and biological activity. Moreover, when mutant GDF-9 was co-expressed with mutant BMP-15, the secretion levels of both proteins were significantly lower than those of cells co-expressing wildtype GDF-9 and mutant BMP-15, suggesting a possible mechanism for the extreme fertility observed in the compound heterozygous mutant sheep.  (+info)

Immunoneutralization of growth differentiation factor 9 reveals it partially accounts for mouse oocyte mitogenic activity. (23/115)

Paracrine factors secreted by oocytes play a pivotal role in promoting early ovarian follicle growth and in defining a morphogenic gradient in antral follicles, yet the exact identities of these oocyte factors remain unknown. This study was conducted to determine the extent to which the mitogenic activity of mouse oocytes can be attributed to growth differentiation factor 9 (GDF9). To do this, specific anti-human GDF9 monoclonal antibodies were generated. Based on epitope mapping and bioassays, a GDF9 neutralizing antibody, mAb-GDF9-53, was characterized with very low cross-reactivity with related transforming growth factor (TGF)beta superfamily members, including BMP15 (also called GDF9B). Pep-SPOT epitope mapping showed that mAb-GDF9-53 recognizes a short 4-aa sequence, and three-dimensional peptide modeling suggested that this binding motif lies at the C-terminal fingertip of mGDF9. As predicted by sequence alignments and modeling, the antibody detected recombinant GDF9, but not BMP15 in a Western blot and GDF9 protein in oocyte extract and oocyte-conditioned medium. In a mouse mural granulosa cell (MGC) bioassay, mAb-GDF9-53 completely abolished the mitogenic effects of GDF9, but had no effect on TGFbeta1 or activin A-stimulated MGC proliferation. An unrelated IgG at the same dose had no effect on GDF9 activity. This GDF9 neutralizing antibody was then tested in an established oocyte-secreted mitogen bioassay, where denuded oocytes cocultured with granulosa cells promote cell proliferation in a dose-dependent manner. The mAb-GDF9-53 dose dependently (0-160 microg/ml) decreased the mitogenic activity of oocytes but only by approximately 45% at the maximum dose of mAb. Just 5 microg/ml of mAb-GDF9-53 neutralized 90% of recombinant mGDF9 mitogenic activity, but only 15% of oocyte activity. Unlike mAb-GDF9-53, a TGFbeta pan-specific neutralizing antibody did not affect the mitogenic capacity of the oocyte, but completely neutralized TGF beta 1-induced DNA synthesis. This study has characterized a specific GDF9 neutralizing antibody. Our data provide the first direct evidence that the endogenous GDF9 protein is an important oocyte-secreted mitogen, but also show that GDF9 accounts for only part of total oocyte bioactivity.  (+info)

Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist gremlin. (24/115)

Growth differentiation factor 9 (GDF9) is an oocyte-expressed member of the transforming growth factor beta (TGF-beta) superfamily and is required for normal ovarian follicle development and female fertility. GDF9 acts as a paracrine factor and affects granulosa cell physiology. Only a few genes regulated by GDF9 are known. Our microarray analysis has identified gremlin as one of the genes up-regulated by GDF9 in cultures of granulosa cells. Gremlin is a known member of the DAN family of bone morphogenetic protein (BMP) antagonists, but its expression and function in the ovary are unknown. We have investigated the regulation of gremlin in mouse granulosa cells by GDF9 as well as other members of the TGF-beta superfamily. GDF9 and BMP4 induce gremlin, but TGF-beta does not. In addition, in cultures of granulosa cells, gremlin negatively regulates BMP4 signaling but not GDF9 activity. The expression of gremlin in the ovary was also examined by in situ hybridization. A distinct change in gremlin mRNA compartmentalization occurs during follicle development and ovulation, indicating a highly regulated expression pattern during folliculogenesis. We propose that gremlin modulates the cross-talk between GDF9 and BMP signaling that is necessary during follicle development because both ligands use components of the same signaling pathway.  (+info)