(1/285) Bone marrow scintigraphy using technetium-99m antigranulocyte antibody in malignant lymphomas.

BACKGROUND: The purpose of this study was to elucidate the clinical reliability of immunoscintigraphy (IS) to detect infiltration of the bone marrow in patients with malignant lymphoma. PATIENTS AND METHODS: Whole body IS was performed in 103 patients with Hodgkin's disease (HD) or non-Hodgkin's lymphoma (NHL) using Tc-99m labelled anti-NCA-95 which allows visualization of the granulopoietic bone marrow. Of these, 52% were studied prior to any therapy. Findings were compared to posterior iliac crest biopsy as well as MRI and/or follow-up examination. Criteria of marrow infiltration were a positive biopsy, positive follow-up, or positive results of MRI. RESULTS: Comparison of IS and biospy revealed concordant findings in 69 and discordant findings in 34 of 103 patients. Of the 34 patients with discordant results, IS showed lesions suspicious of bone marrow infiltration in 29 patients despite normal biopsy findings. When follow-up and additional examinations were taken into consideration, 10 patients remained with probably false positive and five with false negative IS findings. IS proved to be highly sensitive and specific in patients with HD (100% and 84%, respectively) and high-grade NHL (93% and 84%, respectively). Moderate sensitivity (60%) was found in low-grade NHL. This was possibly due to false negative IS in three to five patients with chemotherapy in contrast to one of five false negative results in patients without chemotherapy. CONCLUSION: Bone marrow scintigraphy using antigranulocyte antibodies is highly sensitive in HD and high-grade NHL. Positive findings in IS subsequent to a negative biopsy should be followed by guided re-biopsy or MRI.  (+info)

(2/285) Detection of focal myeloma lesions by technetium-99m-sestaMIBI scintigraphy.

BACKGROUND AND OBJECTIVE: The tracer tachnetium-99m-2-methoxy-isobutyl-isonitrile (Tc99m-sestaMIBI) has recently been shown to concentrate in some neoplastic tissues, including myeloma. We investigated the diagnostic capacity and limits of this procedure in tracing focal myeloma lesions, and compared them with those of conventional radiological procedures (Xr). DESIGN AND METHODS: We studied 55 patients suffering from multiple myeloma (MM) or solitary plasmacytoma in different stages and clinical conditions, or from monoclonal gammopathy of undefined significance (MGUS), by whole body scans obtained 10 minutes after injection of 555 MBq of Tc99m-sestaMIBI. Scans were defined as normal (physiological uptake only), diffuse (presence of bone marrow uptake), or focal (localized areas of uptake), and were compared to conventional skeletal Xr. RESULTS: Thirty patients showed no focal areas of Tc99m-sestaMIBI uptake; this group consisted of 5 patients with MGUS, 6 with MM in stage IA and 2 in stage IIA, 11 patients studied after effective chemotherapy and 6 in early relapse. Twenty-five patients showed one or more spots of focal uptake: all of them had active disease (untreated, resistant or relapsing MM). In the setting of tracing focal lesions, Tc99m-sestaMIBI scans were concordant with the radiological examination in 38 patients and discordant in 17. Among the latter, in 4 cases Tc99m-sestaMIBI revealed focal lesions not detected by Xr, and in 13 cases lytic areas detected by Xr did not show Tc99m-sestaMIBI uptake. INTERPRETATION AND CONCLUSIONS: In untreated patients, the number of lesions revealed by Tc99m-sestaMIBI was comparable to that shown by Xr, while in pretreated patients Tc99m-sestaMIBI traced a number of lesions lower than that detected by Xr. The reason for this discrepancy is that Tc99m-sestaMIBI traces only active lesions. Tc99m-sestaMIBI limitations in identifying focal lesions may derive from the dimension of the smallest traceable lesion (about one centimeter), and from the possibility that focal plasma cell localizations in collapsed bone may not be visualized due to inadequate vascularization. Tc99m-sestaMIBI scintigraphy is an interesting tool for diagnosing, staging and following up focal myeloma lesions, in the bone as well as in soft tissues. It is more specific than conventional Xr in identifying sites of active disease.  (+info)

(3/285) Stage III and oestrogen receptor negativity are associated with poor prognosis after adjuvant high-dose therapy in high-risk breast cancer.

We report on the efficacy and toxicity of a sequential high-dose therapy with peripheral blood stem cell (PBSC) support in 85 patients with high-risk stage II/III breast cancer. There were 71 patients with more than nine tumour-positive axillary lymph nodes. An induction therapy of two cycles of ifosfamide (total dose, 7.5 g m(-2)) and epirubicin (120 mg m(-2)) was given, and PBSC were harvested during G-CSF-supported leucocyte recovery following the second cycle. The PBSC-supported high-dose chemotherapy consisted of two cycles of ifosfamide (total dose, 12,000 mg m(-2)), carboplatin (900 mg m(-2)) and epirubicin (180 mg m(-2)). Patients were autografted with a median number of 3.7 x 10(6) CD34+ cells kg(-1) (range, 1.9-26.5 x 10(6)) resulting in haematological reconstitution within approximately 2 weeks following high-dose therapy. The toxicity was moderate in general, and there was no treatment-related toxic death. Twenty-one patients relapsed between 3 and 30 months following the last cycle of high-dose therapy (median, 11 months). The probability of disease-free and overall survival at 4 years were 60% and 83%, respectively. According to a multivariate analysis, patients with stage II disease had a significantly better probability of disease-free survival (74%) in comparison to patients with stage III disease (36%). The probability of disease-free survival was also significantly better for patients with oestrogen receptor-positive tumours (70%) compared to patients with receptor-negative ones (40%). Bone marrow samples collected from 52 patients after high-dose therapy were examined to evaluate the prognostic relevance of isolated tumour cells. The proportion of patients presenting with tumour cell-positive samples did not change in comparison to that observed before high-dose therapy (65% vs 71%), but a decrease in the incidence and concentration of tumour cells was observed over time after high-dose therapy. This finding was true for patients with relapse and for those in remission, which argues against a prognostic significance of isolated tumour cells in bone marrow. In conclusion, sequential high-dose chemotherapy with PBSC support can be safely administered to patients with high-risk stage II/III breast cancer. Further intensification of the therapy, including the addition of non-cross resistant drugs or immunological approaches such as the use of antibodies against HER-2/NEU, may be envisaged for patients with stage III disease and hormone receptor-negative tumours.  (+info)

(4/285) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist.

The role of androgen receptor (AR) mutations in androgen-independent prostate cancer (PCa) was determined by examining AR transcripts and genes from a large series of bone marrow metastases. Mutations were found in 5 of 16 patients who received combined androgen blockade with the AR antagonist flutamide, and these mutant ARs were strongly stimulated by flutamide. In contrast, the single mutant AR found among 17 patients treated with androgen ablation monotherapy was not flutamide stimulated. Patients with flutamide-stimulated AR mutations responded to subsequent treatment with bicalutamide, an AR antagonist that blocks the mutant ARs. These findings demonstrate that AR mutations occur in response to strong selective pressure from flutamide treatment.  (+info)

(5/285) Detection and clinical importance of micrometastatic disease.

Metastatic relapse in patients with solid tumors is caused by systemic preoperative or perioperative dissemination of tumor cells. The presence of individual tumor cells in bone marrow and in peripheral blood can be detected by immunologic or molecular methods and is being regarded increasingly as a clinically relevant prognostic factor. Because the goal of adjuvant therapy is the eradication of occult micrometastatic tumor cells before metastatic disease becomes clinically evident, the early detection of micrometastases could identify the patients who are most (and least) likely to benefit from adjuvant therapy. In addition, more sensitive methods for detecting such cells should increase knowledge about the biologic mechanisms of metastasis and improve the diagnosis and treatment of micrometastatic disease. In contrast to solid metastatic tumors, micrometastatic tumor cells are appropriate targets for intravenously applied agents because macromolecules and immunocompetent effector cells should have access to the tumor cells. Because the majority of micrometastatic tumor cells may be nonproliferative (G0 phase), standard cytotoxic chemotherapies aimed at proliferating cells may be less effective, which might explain, in part, the failure of chemotherapy. Thus, adjuvant therapies that are aimed at dividing and quiescent cells, such as antibody-based therapies, are of considerable interest. From a literature search that used the databases MEDLINE(R), CANCERLIT(R), Biosis(R), Embase(R), and SciSearch(R), we discuss the current state of research on minimal residual cancer in patients with epithelial tumors and the diagnostic and clinical implications of these findings.  (+info)

(6/285) Sensitive fluorescent in situ hybridisation method for the characterisation of breast cancer cells in bone marrow aspirates.

AIM: The presence of malignant cells in the blood and bone marrow of patients with cancer at the time of surgery may be indicative of early relapse. In addition to their numbers, the phenotypes of the micrometastatic cells might be essential in determining whether overt metastases will develop. This study aimed to establish a sensitive method for the detection and characterisation of malignant cells present in bone marrow. METHODS: In spiking experiments, SKBR3 cells were mixed with mononuclear cells in known proportions to mimic bone marrow samples with micrometastatic cells. Tumour cells were extracted using SAM-M450 Dynabeads coupled to the MOC-31 anti-epithelial antibody, and were further analysed for amplification of erbB2 and int2 by fluorescent in situ hybridisation (FISH). erbB2 and int2 copy numbers were also determined in 15 primary breast cancers, and bone marrow samples from patients with amplification were analysed for micrometastatic cells by immunomagnetic enrichment and FISH. RESULTS: In model experiments, cells with amplification could be detected in bead selected fractions when ratios of tumour cells (SKBR3) to mononuclear cells were as low as 10:10(7). Among the tumour samples, eight showed increased copy numbers of erbB2 and/or int2, and three of these patients had detectable numbers of tumour cells in their bone marrow: 4000, 540, and 26 tumour cells/10(7) mononuclear cells, respectively. The patient with 540 tumour cells/10(7) mononuclear cells showed high level amplification of erbB2 and suffered from a particularly aggressive disease, whereas the patient with 4000 tumour cells/10(7) mononuclear cells had favourable disease progression. CONCLUSION: These results demonstrate the feasibility and advantage of combining immunomagnetic selection and FISH characterisation of cancer cells in bone marrow samples. It is possible that molecular characterisation of such cells could provide prognostically valuable information.  (+info)

(7/285) Cellular proliferation and prevalence of micrometastatic cells in the bone marrow of patients with clinically localized prostate cancer.

The presence of prostate cancer cells in the bone marrow (BM) of patients with clinically localized disease is associated with an increased chance of disease recurrence; however, not all patients develop recurrence. We therefore sought to determine the phenotype of individual micrometastatic cells as a potential method to better predict disease outcome. Immunostaining was performed on BM cells from 46 patients whose BM RNA fraction had been identified to contain prostate-specific antigen mRNA. The prevalence of micrometastatic cells among BM mononuclear cells was determined using an anticytokeratin antibody. Mib-1 antibody was used to determine the percentage of micrometastatic cells that were proliferating. Micrometastatic cells were found in 96% of patient samples, with a 30-fold variation in prevalence ranging from 0.1-3.26/10(5) BM cells. Prior androgen ablation was associated with a reduced prevalence of micrometastatic cells (P = 0.010). In 68% of patients, some micrometastatic cells were judged to be proliferating at proportions ranging from 1 of 11 (9%) to 4 of 4 (100%). Higher Gleason score of the primary tumor was associated with a higher proliferative proportion of micrometastatic cells (P = 0.038). We conclude that, in patients with clinically localized disease, there is wide variability in the prevalence of micrometastatic cells and the proportion which are proliferating. Long-term follow-up will determine whether the development of clinically obvious metastatic disease is related to higher prevalence of micrometastatic cells in the marrow or the proportion that are proliferating.  (+info)

(8/285) Oral etoposide for refractory and relapsed neuroblastoma.

PURPOSE: To describe the efficacy of oral etoposide against resistant stage 4 neuroblastoma. PATIENTS AND METHODS: Patients with refractory or recurrent stage 4 neuroblastoma were treated with etoposide 50 mg/m(2) taken orally each day, in two or three divided doses, for 21 consecutive days. Treatment could be repeated after a 1-week period. Extent-of-disease studies included imaging with 131-iodine-metaiodobenzylguanidine and extensive bone marrow (BM) sampling. RESULTS: Oral etoposide was used in 20 children between the ages of 2 and 11 years (median, 6 years). Prior treatment included high doses of alkylating agents and a median of 4.5 cycles of etoposide-containing chemotherapy, with cumulative etoposide doses of 1,800 mg/m(2) to 3,935 mg/m(2) (median, 2,300 mg/m(2)). Oral etoposide produced antineuroblastoma effects in four of four children with disease refractory to intensive induction treatment; sampling variability could account for resolution (n = 3) or reduction (n = 1) of BM involvement, but improvement in other markers also occurred. Antineuroblastoma effects were also evident in five of five children with asymptomatic relapses after a long chemotherapy-free interval: BM disease resolved and all other disease markers significantly improved in two patients, and disease markers improved or stabilized in three patients on treatment for more than 6 months. In these nine patients, extramedullary toxicity was absent, neutropenia did not occur, transfusional support was not needed, and preliminary data suggested little immunosuppression (phytohemagglutinin responses). Oral etoposide was ineffective in all (11 of 11) patients with rapidly growing tumor masses. CONCLUSION: Given the absence of toxicity to major organs, the minimal myelosuppression or immunosuppression, and the antineoplastic activity in patients with low tumor burdens after high-dose chemotherapy, limited use of low-dose oral etoposide should be considered for inclusion in postinduction consolidative treatment programs aimed at eradicating minimal residual disease.  (+info)