Pediatric nuclear medicine, Part II: Common procedures and considerations. (25/1036)

OBJECTIVE: This paper introduces technologists to pediatric nuclear medicine applications as well as serves as a review of the principles of pediatric imaging for more experienced technologists. After reading this article the nuclear medicine technologist should be able to: (a) identify pediatric populations commonly evaluated with nuclear medicine procedures; (b) state the indications for performing pediatric nuclear medicine procedures; and (c) discuss strategies and tips for performing nuclear medicine procedures on pediatric patients.  (+info)

Posterior pituitary ectopia: another hint toward a genetic etiology. (26/1036)

We report the MR and clinical findings of two patients with growth hormone deficiency and posterior pituitary ectopia (PPE). Possible causes of PPE are discussed.  (+info)

A heterotopic cerebellum presenting as a suprasellar mass with associated nasopharyngeal teratoma. (27/1036)

We present a case of nasopharyngeal teratoma that was discovered in association with a suprasellar heterotopic cerebellum in a newborn. Well-differentiated, heterotopic, cerebellar masses have been reported in the orbits, spine, and frontal encephalocele but not, to our knowledge, in the suprasellar region. In this report, we describe the imaging findings and discuss the possible origins of the two masses discovered in this case.  (+info)

Studies on skeletal muscle biopsies in endemic skeletal fluorosis. (28/1036)

Neurological manifestations of skeletal fluorosis have been attributed to compressive radiculomyelopathy. Experimental fluorosis has shown evidence of myopathic changes. Data on human muscle pathology is very scanty. This study included 22 patients with established osteofluorosis. 16 of them showed only EMG changes of neurogenic muscle disease. Histochemistry and histopathology of muscle biopsies showed features of muscle atrophy, evidenced by 'type I' atrophy and 'type I' grouping. No myopathic changes were observed. It may be concluded that the primary changes are related to the nerve, with muscle being affected secondarily. There was no evidence of any primary muscle pathology due to fluorosis.  (+info)

Metabolic bone disease in chronic renal failure. II. Renal transplant patients. (29/1036)

Trabecular vertebral bone of renal transplant patients was quantitatively compared with bone from normal individuals and dialyzed and nondialyzed patienets with chronic renal failure reported in detail in an earlier study. Long- and short-term transplant patients have increased bone resorption and mineralization defects similar to renal osteodystrophy in dialyzed and nondialyzed patients. However, in transplant patients the magnitude of resorption is greater, and bone volume tends to decrease rather than increase. Resorptive activity in transplant patients is maximal during the first year after transplantation. Bone volume decreases continuously for at least 96 months after transplantation. Only decreased bone volume correlated with success or failure of the renal transplant. Morphologic findings in this study correlate with other clinical and morphologic data to suggest that reduction in bone volume in transplant patients results from a combination of persistent hyperparathyroidism and suppression of bone formation by steroid therapy.  (+info)

A novel mechanism for skeletal resistance in uremia. (30/1036)

BACKGROUND: In treating secondary hyperparathyroidism, the target level of serum intact parathyroid hormone (I-PTH) should be three to five times normal to prevent adynamic bone disease. In circulation, there is a non-(1-84) PTH-truncated fragment, likely 7-84, which, in addition to PTH 1-84, is measured by most I-PTH immunoradiometric (IRMA) assays, giving erroneously high I-PTH values. We have developed a new IRMA assay in which the labeled antibody recognizes only the first six amino acids of the PTH molecule. Thus, this new IRMA assay (Whole PTH) measures only the biologically active 1-84 PTH molecule. METHODS: Using this new IRMA assay (Whole PTH) and the Nichols "intact" PTH assay, we compared the ability of each assay to recognize human PTH (hPTH) 1-84 and hPTH 7-84 and examined the percentage of non-1-84 PTH in circulation and in parathyroid glands. Possible antagonistic effects of the 7-84 PTH fragment on the biological activity of 1-84 PTH in rats were also tested. RESULTS: In 28 uremic patients, PTH values measured with the Nichols assay, representing a combined measurement of both hPTH 1-84 and hPTH 7-84, were 34% higher than with the Whole assay (hPTH 1-84 only); the median PTH was 523 versus 318 pg/mL (P < 0.001). Similar results were found in 14 renal transplant patients. In osteoblast-like cells, ROS 17.2, 1-84 PTH (10-8 mol/L) increased cAMP from 18.1 +/- 1.25 to 738 +/- 4.13 mmol/well. Conversely, the same concentration of 7-84 PTH had no effect. In parathyroidectomized rats fed a calcium-deficient diet, 7-84 PTH was not only biologically inactive, but had antagonistic effects on 1-84 PTH in bone. Plasma calcium was increased (0.65 mg/dL) two hours after 1-84 PTH treatment, while 7-84 PTH had no effect. When 1-84 PTH and 7-84 PTH were given simultaneously in a 1:1 molar ratio, the calcemic response to 1-84 PTH was decreased by 94%. In normal rats, the administration of 1-84 PTH increased renal fractional excretion of phosphate (11.9 to 27.7%, P < 0.001). However, when 1-84 PTH and 7-84 PTH were given simultaneously, the 7-84 PTH decreased the phosphaturic response by 50.2% (P < 0.005). Finally, in surgically excised parathyroid glands from six uremic patients, we found that 44.1% of the total intracellular PTH was the non-PTH (1-84), most likely PTH 7-84. CONCLUSION: In patients with chronic renal failure, the presence of high circulating levels of non-1-84 PTH fragments (most likely 7-84 PTH) detected by the "intact" assay and the antagonistic effects of 7-84 PTH on the biological activity of 1-84 PTH explain the need of higher levels of "intact" PTH to prevent adynamic bone disease.  (+info)

Chronic metabolic acidosis in azotemic rats on a high-phosphate diet halts the progression of renal disease. (31/1036)

BACKGROUND: Hyperphosphatemia and metabolic acidosis are general features of advanced chronic renal failure (RF), and each may affect mineral metabolism. The goal of the present study was to evaluate the effect of chronic metabolic acidosis on the development of hyperparathyroidism and bone disease in normal and azotemic rats on a high-phosphate diet. Our assumption that the two groups of azotemic rats (acid-loaded vs. non-acid-loaded) would have the same degree of renal failure at the end of the study proved to be incorrect. METHODS: Four groups of rats receiving a high-phosphate (1.2%), normal-calcium (0.6%) diet for 30 days were studied: (1) normal (N); (2) normal + acid (N + Ac) in which 1.5% ammonium chloride (NH4Cl) was added to the drinking water to induce acidosis; (3) RF, 5/6 nephrectomized rats; and (4) RF + acid (RF + Ac) in which 0.75% NH4Cl was added to the drinking water of 5/6 nephrectomized rats to induce acidosis. RESULTS: At sacrifice, the arterial pH and serum bicarbonate were lowest in the RF + Ac group and were intermediate in the N + Ac group. Serum creatinine (0.76 +/- 0.08 vs. 1.15 +/- 0.08 mg/dL), blood urea nitrogen (52 +/- 8 vs. 86 +/- 13 mg/dL), parathyroid hormone (PTH; 180 +/- 50 vs. 484 +/- 51 pg/mL), and serum phosphate (7.46 +/- 0.60 vs. 12.87 +/- 1.4 mg/dL) values were less (P < 0.05), and serum calcium (9.00 +/- 0.28 vs. 7.75 +/- 0.28 mg/dL) values were greater (P < 0.05) in the RF + Ac group than in the RF group. The fractional excretion of phosphate (FEP) was greater (P < 0.05) in the two azotemic groups than in the two nonazotemic groups. In the azotemic groups, the FEP was similar even though PTH and serum phosphate values were less in the RF + Ac than in the RF group. NH4Cl-induced acidosis produced hypercalciuria in the N + Ac and RF + Ac groups. When acid-loaded (N + Ac and RF + Ac) and non-acid-loaded (N and RF) rats were combined as separate groups, serum phosphate and PTH values were less for a similarly elevated serum creatinine value in acid-loaded than in non-acid-loaded rats. Finally, the osteoblast surface was less in the N + Ac group than in the other groups. However, in the acid-loaded azotemic group (RF + Ac), the osteoblast surface was not reduced. CONCLUSIONS: The presence of chronic metabolic acidosis in 5/6 nephrectomized rats on a high-phosphate diet (1) protected against the progression of RF, (2) enhanced the renal clearance of phosphate, (3) resulted in a lesser degree of hyperparathyroidism, and (4) did not reduce the osteoblast surface. The combination of metabolic acidosis and phosphate loading may protect against the progression of RF and possibly bone disease because the harmful effects of acidosis and phosphate loading may be counterbalanced.  (+info)

Amyloidoma of the skull base. (32/1036)

We report a case of a primary amyloidoma of the skull base. Plain radiography and CT showed a lytic, highly destructive lesion with multiple scattered calcifications within. MR imaging revealed that the tumor was isoto hypointense to muscle on T1-weighted images and extremely hypointense on T2-weighted images. In contrast to two previous reports, marked enhancement after the administration of contrast material was absent. Bone amyloidomas are very rare and are frequently misinterpreted as chondrosarcomas.  (+info)