Expression and nuclear localization of BLM, a chromosome stability protein mutated in Bloom's syndrome, suggest a role in recombination during meiotic prophase. (9/188)

Bloom's syndrome (BS) is a recessive human genetic disorder characterized by short stature, immunodeficiency and elevated risk of malignancy. BS cells have genomic instability and an increased frequency of sister chromatid exchange. The gene mutated in BS, BLM, encodes a 3'-5' helicase (BLM) with homology to bacterial recombination factor, RecQ. Human males homozygous for BLM mutations are infertile and heterozygous individuals display increased frequencies of structural chromosome abnormalities in their spermatozoa. Also, mutations in the Saccharomyces cerevisiae homolog of BLM, Sgs1, cause a delay in meiotic nuclear division and a reduction in spore viability. These observations suggest that BLM may play a role during meiosis. Our antibodies raised against the C terminus of the human protein specifically recognize both mouse and human BLM in western blots of cell lines and in successive developmental stages of spermatocytes, but fail to detect BLM protein in a cell line with a C-terminally truncated protein. BLM protein expression and location are detected by immunofluorescence and immunoelectron microscopy as discrete foci that are sparsely present on early meiotic prophase chromosome cores, later found abundantly on synapsed cores, frequently in combination with the recombinases RAD51 and DMC1, and eventually as pure BLM foci. The colocalization of RAD51/DMC1 with BLM and the statistically significant excess of BLM signals in the synapsed pseudoautosomal region of the X-Y chromosomes, which is a recombinational hot spot, provide indications that BLM protein may function in the meiotic recombination process.  (+info)

The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. (10/188)

The limited life span of normal human cells represents a substantial obstacle for biochemical analysis, genetic manipulation and genetic screens. To overcome this technical barrier, immortal human cell lines are often derived from tumors or produced by transformation with viral oncogenes such as SV40 large T antigen. Cell lines produced by these approaches are invariably transformed, genomically unstable and display cellular properties that differ from their normal counterpart. It was recently shown that the ectopic expression of hTERT, encoding the catalytic subunit of human telomerase, can extend the life span of normal human cells without causing cellular transformation and genomic instability. In the present study, we have used hTERT to extend the life span of normal human skin fibroblasts derived from patients afflicted with syndromes of genomic instability and/or premature aging. Our results show that hTERT efficiently extends the life span without altering the characteristic phenotypic properties of the cells. Thus, the ectopic expression of telomerase represents a major improvement over the use of viral oncogenes for the establishment of human cell lines.  (+info)

The Bloom's syndrome gene product interacts with topoisomerase III. (11/188)

Bloom's syndrome is a rare genetic disorder associated with loss of genomic integrity and a large increase in the incidence of many types of cancer at an early age. The Bloom's syndrome gene product, BLM, belongs to the RecQ family of DNA helicases, which also includes the human Werner's and Rothmund-Thomson syndrome gene products and the Sgs1 protein of Saccharomyces cerevisiae. This family shows strong evolutionary conservation of protein structure and function. Previous studies have shown that Sgs1p interacts both physically and genetically with topoisomerase III. Here, we have investigated whether this interaction has been conserved in human cells. We show that BLM and hTOPO IIIalpha, one of two human topoisomerase III homologues, co-localize in the nucleus of human cells and can be co-immunoprecipitated from human cell extracts. Moreover, the purified BLM and hTOPO IIIalpha proteins are able to bind specifically to each other in vitro, indicating that the interaction is direct. We have mapped two independent domains on BLM that are important for mediating the interaction with hTOPO IIIalpha. Furthermore, through characterizing a genetic interaction between BLM and TOP3 in S. cerevisiae, we have identified a functional role for the hTOPO IIIalpha interaction domains in BLM.  (+info)

Nuclear structure in normal and Bloom syndrome cells. (12/188)

Bloom syndrome (BS) is a rare cancer-predisposing disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. BLM, the protein altered in BS, is a RecQ DNA helicase. This report shows that BLM is found in the nucleus of normal human cells in the nuclear domain 10 or promyelocytic leukemia nuclear bodies. These structures are punctate depots of proteins disrupted upon viral infection and in certain human malignancies. BLM is found primarily in nuclear domain 10 except during S phase when it colocalizes with the Werner syndrome gene product, WRN, in the nucleolus. BLM colocalizes with a select subset of telomeres in normal cells and with large telomeric clusters seen in simian virus 40-transformed normal fibroblasts. During S phase, BS cells expel micronuclei containing sites of DNA synthesis. BLM is likely to be part of a DNA surveillance mechanism operating during S phase.  (+info)

Covalent modification of the Werner's syndrome gene product with the ubiquitin-related protein, SUMO-1. (13/188)

Werner's syndrome is a potential model of accelerated human aging. The gene responsible for Werner's syndrome encodes a protein that has a helicase domain homologous to Escherichia coli RecQ. To identify binding partners that regulate the function in concert with Wrn, we screened for proteins using the yeast two-hybrid system with mouse Wrn as bait and found three. One was a novel protein, and the other two were mouse Ubc9 and SUMO-1. Ubc9 also interacted with the mouse homologue of the Bloom's syndrome gene product, another eukaryotic RecQ-type helicase, but not mouse DNA helicase Q1/RecQL (RecQL1). Deletion experiments indicated that both proteins interacted with the N-terminal segment of Wrn (amino acid 272-514). The interaction between Wrn and SUMO-1 was weaker than that between Wrn and Ubc9. Positive interaction was observed in the heterogeneous combination of Wrn and yeast Ubc9 (yUbc9), as well as yUbc9 and SUMO-1, in the two-hybrid system. The interaction between yUbc9 and SUMO-1 was abolished by deleting the C-terminal Gly residue of SUMO-1, which is reportedly required for the formation of Ubc9-SUMO-1 thioester linkage. The interaction of Wrn and SUMO-1 was also abolished by deleting the Gly residue, indicating that the interaction of Wrn and SUMO-1 is mediated by yUbc9 in the two-hybrid system. Finally, we confirmed by immunoblotting with an anti-SUMO-1 antibody that Wrn was covalently attached with SUMO-1.  (+info)

The Bloom's syndrome gene product promotes branch migration of holliday junctions. (14/188)

Bloom's syndrome (BS) is an autosomal recessive disorder associated with dwarfism, immunodeficiency, reduced fertility, and elevated levels of many types of cancer. BS cells show marked genomic instability; in particular, hyperrecombination between sister chromatids and homologous chromosomes. This instability is thought to result from defective processing of DNA replication intermediates. The gene mutated in BS, BLM, encodes a member of the RecQ family of DExH box DNA helicases, which also includes the Werner's syndrome gene product. We have investigated the mechanism by which BLM suppresses hyperrecombination. Here, we show that BLM selectively binds Holliday junctions in vitro and acts on recombination intermediates containing a Holliday junction to promote ATP-dependent branch migration. We present a model in which BLM disrupts potentially recombinogenic molecules that arise at sites of stalled replication forks. Our results have implications for the role of BLM as an anti-recombinase in the suppression of tumorigenesis.  (+info)

Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity. (15/188)

Bloom's syndrome is a rare autosomal recessive disorder characterized by genomic instability and predisposition to cancer. BLM, the gene defective in Bloom's syndrome, encodes a 159-kDa protein possessing DNA-stimulated ATPase and ATP-dependent DNA helicase activities. We have examined mechanistic aspects of the catalytic functions of purified recombinant BLM protein. Through analyzing the effects of different lengths of DNA cofactor on ATPase activity, we provide evidence to suggest that BLM translocates along single-stranded DNA in a processive manner. The helicase reaction catalyzed by BLM protein was examined as a function of duplex DNA length. We show that BLM catalyzes unwinding of short DNA duplexes (/=259-bp). The presence of the human single-stranded DNA-binding protein (human replication protein A (hRPA)) stimulates the BLM unwinding reaction on the 259-bp partial duplex DNA substrate. Heterologous single-stranded DNA-binding proteins fail to stimulate similarly the helicase activity of BLM protein. This is the first demonstration of a functional interaction between BLM and another protein. Consistent with a functional interaction between hRPA and the BLM helicase, we demonstrate a direct physical interaction between the two proteins mediated by the 70-kDa subunit of RPA. The interactions between BLM and hRPA suggest that the two proteins function together in vivo to unwind DNA duplexes during replication, recombination, or repair.  (+info)

Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase. (16/188)

Bloom's syndrome (BS) is a rare human autosomal recessive disorder characterized by an increased risk to develop cancer of all types. BS cells are characterized by a generalized genetic instability including a high level of sister chromatid exchanges. BS arises through mutations in both alleles of the BLM gene which encodes a 3' - 5' DNA helicase identified as a member of the RecQ family. We developed polyclonal antibodies specific for the NH2- and COOH-terminal region of BLM. Using these antibodies, we analysed BLM expression during the cell cycle and showed that the BLM protein accumulates to high levels in S phase, persists in G2/M and sharply declines in G1, strongly suggestive of degradation during mitosis. The BLM protein is subject to post-translational modifications in mitosis, as revealed by slow migrating forms of BLM found in both demecolcine-treated cells and in mitotic cells isolated from non-treated asynchronous populations. Phosphatase treatment indicated that phosphorylation events were solely responsible for the appearance of the retarded moieties, a possible signal for subsequent degradation. Together, these results are consistent with a role of BLM in a replicative (S phase) and/or post-replicative (G2 phase) process. Oncogene (2000).  (+info)