Hereditary defects in both germ cells and the blood-testis barrier system in as-mutant rats: evidence from spermatogonial transplantation and tracer-permeability analysis. (9/152)

The rat mutant allele as is located on chromosome 12. Homozygous (as/as) males show arrested spermatogenesis, mainly at the pachytene spermatocyte stage. It is not clear whether this defective spermatogenesis is caused by a failure in a somatic cell component that supports spermatogenesis or in the germ cell itself. Spermatogonial transplantation was performed to identify the genetically defective site in the as/as testis. In experiment 1, germ cells collected from as/as testes were transplanted into the testes of immunodeficient mice and normal rats. In experiment 2, normal rat germ cells were transplanted into as/as testes. The results of experiment 1 showed arrest of spermatogenesis at the pachytene spermatocyte stage, accompanied by a characteristic morphological feature, i.e., the formation of inclusion-like bodies in the cytoplasm, in both rat and mouse recipients. These results revealed the intrinsic effect of the mutant gene(s) on germ cells. In experiment 2, no restoration of spermatogenesis was detected in the recipient testes despite thorough histological examination. These results suggest that defects in a somatic cell component in as/as testes prevent the donor germ cells from colonizing and regaining their spermatogenetic ability. When the seminiferous epithelium of the as/as testis was examined by electron microscopy, no morphological abnormalities, including the formation of ectoplasmic specializations between adjacent Sertoli cells, were observed in the somatic cell components. However, when cytochrome c was applied as a tracer material, it penetrated the tight junctions between the Sertoli cells, indicating dysfunction of the blood-testis barrier in the as/as testis. The lack of restoration of spermatogenesis in the as/as testis after transplantation of normal germ cells may have been caused by the unfavorable environment in the seminiferous epithelium resulting from the incomplete barrier system between adjoining Sertoli cells. The gene(s) at the as locus may have a role in both germ cell differentiation and the establishment of the blood-testis barrier.  (+info)

Multidrug resistance genes and p-glycoprotein in the testis of the rat, mouse, Guinea pig, and human. (10/152)

Study of the multidrug resistance phenomenon in tumor cell lines has led to the discovery of the product of the multidrug resistance (MDR) type 1 genes, the plasma membrane P-glycoprotein (P-gp) that functions as an energy-dependent pump for the efflux of diverse anticancer drugs. P-gp was also recently identified in normal epithelial cells with secretory/excretory functions and in the endothelial cells of the capillary blood vessels in the brain and the testis. These endothelial cells are key elements of the blood-brain and blood-testis barriers, respectively. The aim of this study, in the rat, mouse, guinea pig, and human, was to determine whether testicular cells other than the capillary endothelial cells could express MDR type I genes. Immunohistochemistry on testicular sections revealed that P-gp is present in interstitial cells in the mouse, rat, and human testes, in early and late spermatids in guinea pig testis, and in late spermatids in the rat, mouse, and human. Reverse transcription-polymerase chain reaction analysis on isolated mouse, rat, and human cells showed that all somatic testicular cells (Leydig cells, macrophages, peritubular cells, and Sertoli cells) and the cytoplasmic lobes from rat late spermatids expressed MDR type I mRNAs, whereas spermatogonia, pachytene spermatocytes, and early spermatids did not. An ontogenesis study in the mouse reveals that type I MDR gene expression begins at 13.5 days postcoitum at the time when the seminiferous cords and the blood vessels appear and are maintained thereafter. Finally, two functional tests on isolated rat cells, the doxorubicin and rhodamine uptake assays, demonstrated that rat testicular macrophages, Leydig cells, peritubular cells, and Sertoli cells displayed a multidrug-resistance activity, whereas spermatogonia, pachytene spermatocytes, and early spermatids did not. Western blot experiments have revealed that a P-gp of 175 kDa is present in the human testis as well as in the rat Leydig cells, testicular macrophages, peritubular cells, and Sertoli cells, but is absent in spermatogonia, spermatocytes, and early spermatids. We conclude that P-gp is involved in the self-protection of the somatic cells and is most probably one of the molecules that confers its functionality to the blood-testis barrier. The absence of expression of MDR type I genes in mitotic and meiotic germ cells probably explains their particular vulnerability to various anticancer drugs. In contrast, expression of the P-gp in the haploid cells most likely reflects the ability of spermatozoa to assume their own antidrug defense.  (+info)

Transforming growth factor beta3 regulates the dynamics of Sertoli cell tight junctions via the p38 mitogen-activated protein kinase pathway. (11/152)

Earlier studies have implicated the significance of transforming growth factor-beta3 (TGFbeta3) in the regulation of Sertoli cell tight junction (TJ) dynamics, possibly via its inhibitory effects on the expression of occludin, claudin-11, and zonula occludens-1 (ZO-1). Yet the mechanism by which TGFbeta3 regulates the Sertoli cell TJ-permeability barrier is not known. Using techniques of semiquantitative reverse transcription-PCR (RT-PCR), immunoblotting, immunohistochemistry, and inhibitors against different kinases coupled with physiological techniques to assess the Sertoli cell TJ barrier function, it was shown that this TGFbeta3-induced effect on Sertoli cell TJ dynamics is mediated via the p38 mitogen-activated protein (MAP) kinase pathway. First, the assembly of the Sertoli cell-TJ barrier was shown to be associated with a transient but significant decline in both the TGFbeta3 production and expression by Sertoli cells. Furthermore, addition of TGFbeta3 to Sertoli cell cultures during TJ assembly indeed perturbed the TJ barrier with an IC50 at approximately 9 pM. Second, the TGFbeta3-induced disruption of the TJ barrier was associated with a transient induction in MEKK2 but not the other upstream signaling molecules that mediate TGFbeta3 action, such as Smad2, Cdc42, Rac2, and N-Ras, suggesting this effect might be mediated via the p38 MAP kinase pathway. This postulate was confirmed by the observation that TGFbeta3 also induced the protein level of the activated and phosphorylated form of p38 MAP kinase at the time the TJ barrier was perturbed. Third, and perhaps the most important of all, this TGFbeta3-mediated inhibitory effect on the TJ barrier and the TGFbeta3-induced p-p38 MAP kinase production could be blocked by SB202190, a specific p38 MAP kinase inhibitor, but not U0126, a specific MEK1/2 kinase inhibitor. These results thus unequivocally demonstrate that TGFbeta3 utilizes the p38 MAP kinase pathway to regulate Sertoli cell TJ dynamics.  (+info)

Regulation of blood-testis barrier dynamics: an in vivo study. (12/152)

An in vivo model was used to investigate the regulation of tight junction (TJ) dynamics in the testis when adult rats were treated with CdCl(2). It was shown that the CdCl(2)-induced disruption of the blood-testis barrier (BTB) associated with a transient induction in testicular TGF-beta2 and TGF-beta3 (but not TGF-beta1) and the phosphorylated p38 mitogen activated protein (MAP) kinase, concomitant with a loss of occludin and zonula occludens-1 (ZO-1) from the BTB site in the seminiferous epithelium. These results suggest that BTB dynamics in vivo are regulated by TGF-beta2/-beta3 via the p38 MAP kinase pathway. Indeed, SB202190, a specific p38 MAP kinase inhibitor, blocked the CdCl(2)-induced occludin and ZO-1 loss from the BTB. This result clearly illustrates that CdCl(2) mediates its BTB disruptive effects via the TGF-beta3/p38 MAP kinase signaling pathway. Besides, this CdCl(2)-induced occludin and ZO-1 loss from the BTB also associated with a significant loss of the cadherin/catenin and the nectin/afadin protein complexes at the site of cell-cell actin-based adherens junctions (AJs). An induction of alpha(2)-macroglobulin (a non-specific protease inhibitor) was also observed during BTB damage and when the seminiferous epithelium was being depleted of germ cells. These data illustrate that a primary disruption of the BTB can lead to a secondary loss of cell adhesion function at the site of AJs, concomitant with an induction in protease inhibitor, which apparently is used to protect the epithelium from unwanted proteolysis. alpha(2)-Macroglobulin was also shown to associate physically with TGF-beta3, afadin and nectin 3, but not occludin, E-cadherin or N-cadherin, indicating its possible role in junction restructuring in vivo. Additionally, the use of SB202190 to block the TGF-beta3/p-38 MAP kinase pathway also prevented the CdCl(2)-induced loss of cadherin/catenin and nectin/afadin protein complexes from the AJ sites, yet it had no apparent effect on alpha(2)-macroglobulin. These results demonstrate for the first time that the TGF-beta3/p38 MAP kinase signaling pathway is being used to regulate both TJ and AJ dynamics in the testis, mediated by the effects of TGF-beta3 on TJ- and AJ-integral membrane proteins and adaptors, but not protease inhibitors.  (+info)

Xenobiotic and endobiotic transporter mRNA expression in the blood-testis barrier. (13/152)

A major function of xenobiotic and endobiotic transporters is to move a wide range of organic substances across cell membranes. Sertoli cells play an important role in protecting developing germ cells by forming a physiological barrier, limiting exposure to potentially toxic substrates, or conversely, facilitating uptake of xenobiotics within the testis. The aim of this study was to quantitatively determine the constitutive expression of various transporters in isolated Sertoli cells from adult Sprague-Dawley rats. The following mRNA levels were measured in isolated Sertoli cells by the branched DNA signal amplification method, multidrug resistance (Mdr) protein 1a, 1b, and 2; multiple drug resistance protein (Mrp) 1, 2, 3, 4, 5, 6, 7, and 8; sodium taurocholate cotransporting polypeptide; bile salt excretory protein; ileal bile acid transporter; AbcG5 and AbcG8; organic anion transporting polypeptide (Oatp) 1, 2, 3, 4, 5, 9, and 12; prostaglandin transporter (Pgt); testis-specific transporter (Tst) 1 and Tst2; organic anion transporter (Oat) 1, 2, 3, and K; organic cation transporter (Oct) 1, 2, 3, N1, and N2; divalent metal transporter (Dmt) 1, Menke's, and Wilson's; zinc transporter (Znt) 1; equilibrative nucleoside transporter (Ent) 1 and 2; concentrative nucleoside transporter (Cnt) 1 and 2; and peptide transporter (Pept) 1 and 2. Levels were also determined in whole testis, liver, kidney, and ileum to provide a reference for determining relative expression levels. Mrp8, Tst1 and 2, and Ent1 and 2 were expressed in Sertoli cells at higher levels than in liver, kidney, or ileum, whereas Mrp1, 5, and 7, Mdr2, Oatp3, Oat2, OctN2, Dmt1, Menke's, Wilson's, and Znt1 were all significantly expressed in Sertoli cells, but Sertoli cell expression was not the tissue of highest expression. The remaining transporters were expressed at low levels in isolated Sertoli cells. Additionally, expression levels of Mrp1, Mrp7, Mrp8, Tst1, Tst2, OctN2, Wilson's, Znt1, Ent1, and Ent2 were greater in isolated Sertoli cells than in whole testis. Constitutive expression of transporters in Sertoli cells may provide an insight into the range of xenobiotics that can potentially be transported by Sertoli cells and thereby provide a mechanistic under standing of blood-testis barrier function.  (+info)

Nucleoside transport at the blood-testis barrier studied with primary-cultured sertoli cells. (14/152)

Nucleosides are essential for nucleotide synthesis in testicular spermatogenesis. In the present study, the mechanism of the supply of nucleosides to the testicular system across the blood-testis barrier was studied using primary-cultured Sertoli cells from rats and TM4 cells from mice. Uptake of uridine by these cells was time- and concentration-dependent. Uridine uptake was decreased under Na(+)-free conditions, and the system was presumed to be high affinity, indicating an Na(+)-dependent concentrative nucleoside transporter (CNT) is involved. On the other hand, nitrobenzylthioinosine, a potent inhibitor of Na(+)-independent equilibrative nucleoside transporters (ENTs), inhibited uridine uptake by the Sertoli cells in a concentration-dependent manner. Expression of nucleoside transporters ENT1, ENT2, ENT3, CNT1, CNT2, and CNT3 was detected in Sertoli cells by reverse transcriptase-polymerase chain reaction analysis. Inhibition studies of the uptake of uridine by various nucleosides both in the presence and absence of Na(+) indicated that the most of those expressed nucleoside transporters, ENTs and CNTs, are involved functionally. These results demonstrated that Sertoli cells are equipped with multiple nucleoside transport systems, including ENT1, ENT2, and CNTs, to provide nucleosides for spermatogenesis.  (+info)

Blood-testis barrier dynamics are regulated by an engagement/disengagement mechanism between tight and adherens junctions via peripheral adaptors. (15/152)

In the mammalian testis, the blood-testis barrier (BTB), unlike the blood-brain and blood-retina barriers, is composed of coexisting tight junctions (TJs) and adherens junctions (AJs). Yet these junctions must open (or disassemble) to accommodate the migration of preleptotene and leptotene spermatocytes across the BTB during spermatogenesis while maintaining its integrity. In this report, we show that the BTB utilizes a unique "engagement" and "disengagement" mechanism to permit the disruption of AJ that facilitates germ cell movement without compromising the BTB integrity. For instance, both TJ (e.g., occludin and JAM-1) and AJ (e.g., N-cadherin) integral membrane proteins were colocalized to the same site at the BTB. Although these TJ- and AJ-integral membrane proteins did not physically interact with each other, they were structurally linked by means of peripheral adaptors (e.g., ZO-1 and alpha- and gamma-catenins). As such, these proteins are structurally "engaged" under physiological conditions to reinforce the BTB. When rats were exposed to Adjudin to induce AJ restructuring that eventually led to germ cell loss from the epithelium, this structural interaction between occludin and N-cadherin by means of their adaptors became "disengaged" while their protein levels were significantly induced. In short, when the epithelium is under assault, such as by Adjudin or plausibly at the time of germ cell migration across the BTB during spermatogenesis, the TJ- and AJ-integral membrane proteins can be disengaged. Thus, this mechanism is used by the testis to facilitate AJ restructuring to accommodate germ cell migration while maintaining the BTB integrity.  (+info)

Mitogen-activated protein kinases, adherens junction dynamics, and spermatogenesis: a review of recent data. (16/152)

Mitogen-activated protein kinases (MAPKs) are important regulators of many cellular processes. In mammalian testes, these kinases are involved in controlling cell division, differentiation, survival and death, and are therefore critical to spermatogenesis. Recent studies have also illustrated their involvement in junction restructuring in the seminiferous epithelium, especially at the ectoplasmic specialization (ES), a testis-specific adherens junction (AJ) type. ES contributes to the adhesion between Sertoli cells at the blood-testis barrier, as well as between Sertoli and developing spermatids (step 9 and beyond) at the adluminal compartment. MAPKs regulate AJ dynamics in the testis via their effects on the turnover of junction-associated protein complexes, the production of proteases and protease inhibitors, and the cytoskeleton structure. In this review, roles of the three major MAPK members, namely extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, in ES dynamics are critically discussed. An integrated model of how these three MAPKs regulate adhesion function in the seminiferous epithelium is also presented. This model will serve as the framework for future investigation in the field.  (+info)