Long-term effects of growth hormone (GH) on body fluid distribution in GH deficient adults: a four months double blind placebo controlled trial. (33/36453)

OBJECTIVE: Short-term growth hormone (GH) treatment normalises body fluid distribution in adult GH deficient patients, but the impact of long-term treatment on body fluid homeostasis has hitherto not been thoroughly examined in placebo controlled trials. To investigate if the water retaining effect of GH persists for a longer time we examined the impact of 4 months GH treatment on extracellular volume (ECV) and plasma volume (PV) in GH deficient adults. DESIGN: Twenty-four (18 male, 6 female) adult GH deficient patients aged 25-64 years were included and received either GH (n=11) or placebo (n=13) in a double blind parallel design. METHODS: Before and at the end of each 4 month period ECV and PV were assessed directly using 82Br- and 125I-albumin respectively, and blood samples were obtained. RESULTS: During GH treatment ECV increased significantly (before: 20.48+/-0.99 l, 4 months: 23.77+/-1.38 l (P<0.01)), but remained unchanged during placebo administration (before: 16.92+/-1.01 l, 4 months: 17.60+/-1.24 l (P=0.37)). The difference between the groups was significant (P<0.05). GH treatment also increased PV (before: 3.39+/-0.27 l. 4 months: 3.71+/-0.261 (P=0.01)), although an insignificant increase in the placebo treated patients (before: 2.81+/-0.18 l, 4 months: 2.89+/-0.20 l (P=0.37)) resulted in an insignificant treatment effect (P=0.07). Serum insulin-like growth factor-I increased significantly during GH treatment and was not affected by placebo treatment. Plasma renin (mIU/l) increased during GH administration (before: 14.73+/-2.16, 4 months: 26.00+/-6.22 (P=0.03)) and remained unchanged following placebo (before: 20.77+/-5.13, 4 months: 20.69+/-6.67 (P=0.99)) leaving no significant treatment effect (P=0.08). CONCLUSION: The long-term impact of GH treatment on body fluid distribution in adult GH deficient patients involves expansion of ECV and probably also PV. These data substantiate the role of GH as a regulator of fluid homeostasis in adult GH deficiency.  (+info)

Trigeminal and carotid body inputs controlling vascular resistance in muscle during post-contraction hyperaemia in cats. (34/36453)

1. In anaesthetized cats, the effects of stimulation of the receptors in the nasal mucosa and carotid body chemoreceptors on vascular resistance in hindlimb skeletal muscle were studied to see whether the responses were the same in active as in resting muscle. The measurements of vascular resistance were taken, first, in resting muscle, and second, in the immediate post-contraction hyperaemic phase that followed a 30 s period of isometric contractions. 2. Stimulation of the receptors in the nasal mucosa caused reflex apnoea and vasoconstriction in muscle. The latter response was attenuated when the test was repeated during post-contraction hyperaemia. 3. Stimulations of the carotid bodies were made during a period of apnoea evoked reflexly by electrical stimulation of both superior laryngeal nerves. This apnoea prevented any effects of changes in respiration on the carotid body reflex vascular responses. Stimulation of the carotid bodies evoked hindlimb muscle vasoconstriction. In the post-contraction hyperaemic period, the response was reduced or abolished. A similar attenuation of the reflex vasoconstrictor responses occurred in decentralized muscles stimulated through their motor roots in the cauda equina. 4. Evidence is presented that the attenuation of the vasoconstrictor responses evoked by the two reflexes is a phenomenon localized to the contracting muscles themselves resulting from an interaction between sympathetic neuronal activity and the local production of metabolites. 5. The results are discussed in relation to the metabolic needs of tissues in relation to asphyxial defence mechanisms such as occur in the diving response.  (+info)

A method for determining baroreflex-mediated sympathetic and parasympathetic control of the heart in pregnant and non-pregnant sheep. (35/36453)

1. The cardiac baroreflex was measured in four non-pregnant and six pregnant ewes before and during beta-adrenoreceptor blockade with propranolol and before and during vagal blockade with atropine. Arterial pressure was raised by phenylephrine and lowered by sodium nitroprusside. The relationships between mean arterial pressure (MAP) and heart rate (HR), between MAP and heart rate variability (HRV) measured as the coefficient of variation (c.v.) of the mean pulse interval (PI), and between MAP and HRV measured by power spectral analysis were determined. 2. The MAP-HR relationship showed that in pregnant ewes the gain of the cardiac baroreflex was reduced when compared with non-pregnant ewes. Threshold and saturation pressures were higher, maximum achievable HR was lower and there was a decrease in the operating range. 3. V-shaped relationships were obtained between MAP and HRV (measured as the c.v. of PI) and between MAP and power spectral density in the frequency range 0.04-0. 08 Hz. Using selective autonomic blockade the negative, or downward, slope of the V shape was shown to be a measure of baroreceptor-induced, sympathetically mediated effects on HRV. The upward, or positive, slope of the V shape was a measure of baroreceptor-induced, vagally mediated effects. Similar results were also obtained from the cardiac power spectrum, but it was less sensitive. The MAP at which the two slopes intersected was the same as the resting MAP. 4. In pregnant ewes, the slope of the downward limb of the V-shaped relationship between HRV (when measured as the c.v. of PI) and MAP was less than in non-pregnant ewes. 5. The relationship between MAP and the coefficient of variation of the mean pulse interval can therefore be used to measure the degree to which baroreceptor-induced sympathetic and parasympathetic activity affects the heart. 6. The resting MAP is the pressure at which the net effect of these sympathetic and parasympathetic influences on the heart is at a minimum. Studies of both the MAP-HR and MAP-HRV relationships in pregnant and non-pregnant sheep show that in pregnant sheep, there is attenuation of baroreceptor-mediated sympathetic effects on the heart.  (+info)

Modulation of the thermoregulatory sweating response to mild hyperthermia during activation of the muscle metaboreflex in humans. (36/36453)

1. To investigate the effect of the muscle metaboreflex on the thermoregulatory sweating response in humans, eight healthy male subjects performed sustained isometric handgrip exercise in an environmental chamber (35 C and 50 % relative humidity) at 30 or 45 % maximal voluntary contraction (MVC), at the end of which the blood circulation to the forearm was occluded for 120 s. The environmental conditions were such as to produce sweating by increase in skin temperature without a marked change in oesophageal temperature. 2. During circulatory occlusion after handgrip exercise at 30 % MVC for 120 s or at 45 % MVC for 60 s, the sweating rate (SR) on the chest and forearm (hairy regions), and the mean arterial blood pressure were significantly above baseline values (P < 0.05). There were no changes from baseline values in the oesophageal temperature, mean skin temperature, or SR on the palm (hairless regions). 3. During the occlusion after handgrip exercise at 30 % MVC for 60 s and during the occlusion alone, none of the measured parameters differed from baseline values. 4. It is concluded that, under mildly hyperthermic conditions, the thermoregulatory sweating response on the hairy regions is modulated by afferent signals from muscle metaboreceptors.  (+info)

Enantioselective inhibition of the biotransformation and pharmacological actions of isoidide dinitrate by diphenyleneiodonium sulphate. (37/36453)

1. We have shown previously that the D- and L- enantiomers of isoidide dinitrate (D-IIDN and L-IIDN) exhibit a potency difference for relaxation and cyclic GMP accumulation in isolated rat aorta and that this is related to preferential biotransformation of the more potent enantiomer (D-IIDN). The objective of the current study was to examine the effect of the flavoprotein inhibitor, diphenyleneiodonium sulphate (DPI), on the enantioselectivity of IIDN action. 2. In isolated rat aortic strip preparations, exposure to 0.3 microM DPI resulted in a 3.6 fold increase in the EC50 value for D-IIDN-induced relaxation, but had no effect on L-IIDN-induced relaxation. 3. Incubation of aortic strips with 2 microM D- or L-IIDN for 5 min resulted in significantly more D-isoidide mononitrate formed (5.0 +/- 1.5 pmol mg protein(-1)) than L-isoidide mononitrate (2.1 +/- 0.7 pmol mg protein(-1)) and this difference was abolished by pretreatment of tissues with 0.3 microM DPI. DPI had no effect on glutathione S-transferase (GST) activity or GSH-dependent biotransformation of D- or L-IIDN in the 105,000 x g supernatant fraction of rat aorta. 4. Consistent with both the relaxation and biotransformation data, treatment of tissues with 0.3 microM DPI significantly inhibited D-IIDN-induced cyclic GMP accumulation, but had no effect on L-IIDN-induced cyclic GMP accumulation. 5. In the intact animal, 2 mg kg(-1) DPI significantly inhibited the pharmacokinetic and haemodynamic properties of D-IIDN, but had no effect L-IIDN. 6. These data suggest that the basis for the potency difference for relaxation by the two enantiomers is preferential biotransformation of D-IIDN to NO, by an enzyme that is inhibited by DPI. Given that DPI binds to and inhibits NADPH-cytochrome P450 reductase, the data are consistent with a role for the cytochromes P450-NADPH-cytochrome P450 reductase system in this enantioselective biotransformation process.  (+info)

Nitric oxide limits the eicosanoid-dependent bronchoconstriction and hypotension induced by endothelin-1 in the guinea-pig. (38/36453)

1. This study attempts to investigate if endogenous nitric oxide (NO) can modulate the eicosanoid-releasing properties of intravenously administered endothelin-1 (ET-1) in the pulmonary and circulatory systems in the guinea-pig. 2. The nitric oxide synthase blocker N(omega)-nitro-L-arginine methyl ester (L-NAME; 300 microM; 30 min infusion) potentiated, in an L-arginine sensitive fashion, the release of thromboxane A2 (TxA2) stimulated by ET-1, the selective ET(B) receptor agonist IRL 1620 (Suc-[Glu9,Ala11,15]-ET-1(8-21)) or bradykinin (BK) (5, 50 and 50 nM, respectively, 3 min infusion) in guinea-pig isolated and perfused lungs. 3. In anaesthetized and ventilated guinea-pigs intravenous injection of ET-1 (0.1-1.0 nmol kg(-1)), IRL 1620 (0.2-1.6 nmol kg(-1)), BK (1.0-10.0 nmol kg(-1)) or U 46619 (0.2-5.7 nmol kg(-1)) each induced dose-dependent increases in pulmonary insufflation pressure (PIP). Pretreatment with L-NAME (5 mg kg(-1)) did not change basal PIP, but increased, in L-arginine sensitive manner, the magnitude of the PIP increases (in both amplitude and duration) triggered by each of the peptides (at 0.25, 0.4 and 1.0 nmol kg(-1), respectively), without modifying bronchoconstriction caused by U 46619 (0.57 nmol kg(-1)). 4. The increases in PIP induced by ET-1, IRL 1620 (0.25 and 0.4 nmol kg(-1), respectively) or U 46619 (0.57 nmol kg(-1)) were accompanied by rapid and transient increases of mean arterial blood pressure (MAP). Pretreatment with L-NAME (5 mg kg(-1); i.v. raised basal MAP persistently and, under this condition, subsequent administration of ET-1 or IRL 1620, but not of U-46619, induced hypotensive responses which were prevented by pretreatment with the cyclo-oxygenase inhibitor indomethacin. 5. Thus, endogenous NO appears to modulate ET-1-induced bronchoconstriction and pressor effects in the guinea-pig by limiting the peptide's ability to induce, possibly via ET(B) receptors, the release of TxA2 in the lungs and of vasodilatory prostanoids in the systemic circulation. Furthermore, it would seem that these eicosanoid-dependent actions of ET-1 in the pulmonary system and on systemic arterial resistance in this species are physiologically dissociated.  (+info)

A comparison of an A1 adenosine receptor agonist (CVT-510) with diltiazem for slowing of AV nodal conduction in guinea-pig. (39/36453)

1. The purpose of this study was to compare the pharmacological properties (i.e. the AV nodal depressant, vasodilator, and inotropic effects) of two AV nodal blocking agents belonging to different drug classes; a novel A1 adenosine receptor (A1 receptor) agonist, N-(3(R)-tetrahydrofuranyl)-6-aminopurine riboside (CVT-510), and the prototypical calcium channel blocker diltiazem. 2. In the atrial-paced isolated heart, CVT-510 was approximately 5 fold more potent to prolong the stimulus-to-His bundle (S-H interval), a measure of slowing AV nodal conduction (EC50 = 41 nM) than to increase coronary conductance (EC50 = 200 nM). At concentrations of CVT-510 (40 nM) and diltiazem (1 microM) that caused equal prolongation of S-H interval (approximately 10 ms), diltiazem, but not CVT-510, significantly reduced left ventricular developed pressure (LVP) and markedly increased coronary conductance. CVT-510 shortened atrial (EC50 = 73 nM) but not the ventricular monophasic action potentials (MAP). 3. In atrial-paced anaesthetized guinea-pigs, intravenous infusions of CVT-510 and diltiazem caused nearly equal prolongations of P-R interval. However, diltiazem, but not CVT-510, significantly reduced mean arterial blood pressure. 4. Both CVT-510 and diltiazem prolonged S-H interval, i.e., slowed AV nodal conduction. However, the A1 receptor-selective agonist CVT-510 did so without causing the negative inotropic, vasodilator, and hypotensive effects associated with diltiazem. Because CVT-510 did not affect the ventricular action potential, it is unlikely that this agonist will have a proarrythmic action in ventricular myocardium.  (+info)

In vivo demonstration of H3-histaminergic inhibition of cardiac sympathetic stimulation by R-alpha-methyl-histamine and its prodrug BP 2.94 in the dog. (40/36453)

1. The aim of this study was to investigate whether histamine H3-receptor agonists could inhibit the effects of cardiac sympathetic nerve stimulation in the dog. 2. Catecholamine release by the heart and the associated variation of haemodynamic parameters were measured after electrical stimulation of the right cardiac sympathetic nerves (1-4 Hz, 10 V, 10 ms) in the anaesthetized dog treated with R-alpha-methyl-histamine (R-HA) and its prodrug BP 2.94 (BP). 3. Cardiac sympathetic stimulation induced a noradrenaline release into the coronary sinus along with a tachycardia and an increase in left ventricular pressure and contractility without changes in mean arterial pressure. Intravenous administration of H3-receptor agonists significantly decreased noradrenaline release by the heart (R-HA at 2 micromol kg(-1) h(-1): +77 +/- 25 vs +405 +/- 82; BP 2.94 at 1 mg kg(-1): +12 +/- 11 vs +330 +/- 100 pg ml(-1) in control conditions, P < or = 0.05), and increases in heart rate (R-HA at 2 micromol kg(-1) h(-1): +26 +/- 8 vs +65 +/- 10 and BP 2.94 at 1 mg kg(-1): +30 +/- 8 vs 75 +/- 6 beats min(-1), in control conditions P < or = 0.05), left ventricular pressure, and contractility. Treatment with SC 359 (1 mg kg(-1)) a selective H3-antagonist, reversed the effects of H3-receptor agonists. Treatment with R-HA at 2 micromol kg(-1) h(-1) and BP 2.94 at 1 mg kg(-1) tended to decrease, while that with SC 359 significantly increased basal heart rate (from 111 +/- 3 to 130 +/- 5 beats min(-1), P < or = 0.001). 4. Functional H3-receptors are present on sympathetic nerve endings in the dog heart. Their stimulation by R-alpha-methyl-histamine or BP 2.94 can inhibit noradrenaline release by the heart and its associated haemodynamic effects.  (+info)