Crossmatch testing in kidney transplantation: patterns of practice and associations with rejection and graft survival. (65/176)

Methods of crossmatch testing prior to kidney transplantation are not standardized and there are limited large-scale data on the use and outcomes implications of crossmatch modality. Data describing the most sensitive crossmatch modality for crossmatch-negative kidney transplants were drawn from the Organ Procurement and Transplant Network Registry. Within the cohort transplanted in 1999-2005, we identified patient and transplant characteristics predictive of each testing modality by multivariate logistic regression. We assessed associations of crossmatch modality with rejection risk by logistic regression and with graft survival by Cox's hazards analysis. Among 230,995 transplants, use of flow cytometry with T-and B-lymphocytes (T&B FC) increased progressively in 1987-2005. Among the recent transplants performed in 1999-2005 (n=64,320), negative T&B FC crossmatch was associated with 15% lower relative risk of first-year acute rejection (adjusted HR 0.85, 95% CI 0.80-0.89) compared to negative T-antihuman-globulin and B-National Institutes of Health/Wash (T AHG &B) crossmatch. Five-year graft survival after transplant with negative T&B FC (82.6%) was modestly better than after negative T AHG &B (81.4%, P= 0.008) or T AHG crossmatch (81.1%, P 0.0001), but on adjusted analysis was significantly different only among recipients from deceased donors and patients aged > 60 years. Many subgroups for whom negative T&B FC crossmatch predicted lower rejection risk (Caucasians, deceased donor recipients, re-transplants) were not more likely to be crossmatched by this method. We conclude that current practice patterns have not aligned utilization of T&B FC crossmatch with associated benefits. Prospective evaluation of the relationship of crossmatch modality with outcomes is warranted.  (+info)

Pronase-free B-cell flow-cytometry crossmatch. (66/176)

Detection of anti-class II antibodies by panel response assay (PRA) and flow cross-match techniques carries an important value in terms of graft function. Even low levels of pre-formed alloantibodies to HLA class II antigens represent a risk of rejection. We present here a method for blocking non-specific flow crossmatch reactions using pooled, heat-inactivated rabbit serum. This method shows very low background and minimal non-specific reactions. In addition, it avoids the use pronase enzyme that can non-specifically digest different cell surface proteins.  (+info)

Natural history of mixed chimerism after bone marrow transplantation with CD6-depleted allogeneic marrow: a stable equilibrium. (67/176)

Mixed hematopoietic chimerism (MC) is a common finding after allogeneic bone marrow transplantation (BMT), but the natural history of this phenomenon remains unclear. To understand the evolution and the implications of this finding, we performed a prospective analysis of the development of mixed chimerism in 43 patients with hematologic malignancies who received bone marrow (BM) from human leukocyte antigen (HLA)-identical sibling donors. T-cell depletion in vitro with anti-T12 (CD6) monoclonal antibody and rabbit complement was used as the only method of graft-versus-host disease (GVHD) prophylaxis. Overall, MC was identified in peripheral blood (PB) and BM in 22 of 43 (51%) patients evaluated. MC was found by restriction fragment length polymorphism (RFLP) analysis in 21 of 40 (53%) patients, by cytogenetic analysis in 6 of 29 (21%) patients, and by red blood cell phenotyping in 4 of 9 (44%) patients. RFLP studies were performed at 0.5, 1, 3, 6, 9, and 12 months post-BMT and then every 6 months, and showed a high probability of developing MC in the first 6 months after BMT followed by stabilization after 12 months. Cytogenetic analysis was less sensitive in detecting MC. Once MC was detected after BMT, the percentage of recipient cells increased very slowly over more than 3 years of follow-up, and no patient reverted to complete donor hematopoiesis (CDH). Thus, recipient and donor cells remained in a relative state of equilibrium for prolonged periods that seemed to favor recipient cells over donor cells. Patient's disease, remission status, or intensity of the transplant preparative regimen did not influence the subsequent development of mixed chimerism. Early immunologic reconstitution was the only factor that correlated with the subsequent chimeric status of the patients. The percentage and absolute number of T3 (CD3) and T4 (CD4) positive cells at day 14 after BMT were significantly higher in the patients who maintained CDH but NK cell reconstitution was similar in both groups, suggesting that early reconstitution with T cells may play a role in preventing recovery of recipient cells after BMT. GVHD was also associated with maintenance of CDH, but the probability of relapse, survival, and disease-free survival was identical in patients with MC and CDH.  (+info)

Quality of paediatric blood transfusions in two district hospitals in Tanzania: a cross-sectional hospital based study. (68/176)

 (+info)

Primary anti-D immunization by DEL red blood cells. (69/176)

 (+info)

Absence of donor-specific anti-HLA antibodies after ABO-incompatible heart transplantation in infancy: altered immunity or age? (70/176)

 (+info)

Transfusion in the age of molecular diagnostics. (71/176)

 (+info)

The 'blood group O problem' in kidney transplantation--time to change? (72/176)

 (+info)