Cyclins A and B associate with chromatin and the polar regions of spindles, respectively, and do not undergo complete degradation at anaphase in syncytial Drosophila embryos. (65/342)

Maternally contributed cyclin A and B proteins are initially distributed uniformly throughout the syncytial Drosophila embryo. As dividing nuclei migrate to the cortex of the embryo, the A and B cyclins become concentrated in surface layers extending to depths of approximately 30-40 microns and 5-10 microns, respectively. The initiation of nuclear envelope breakdown, spindle formation, and the initial congression of the centromeric regions of the chromosomes onto the metaphase plate all take place within the surface layer occupied by cyclin B on the apical side of the blastoderm nuclei. Cyclin B is seen mainly, but not exclusively, in the vicinity of microtubules throughout the mitotic cycle. It is most conspicuous around the centrosomes. Cyclin A is present at its highest concentrations throughout the cytoplasm during the interphase periods of the blastoderm cycles, although weak punctate staining can also be detected in the nucleus. It associates with the condensing chromosomes during prophase, segregates into daughter nuclei in association with chromosomes during anaphase, to redistribute into the cytoplasm after telophase. In contrast to the cycles following cellularization, neither cyclin is completely degraded upon the metaphase-anaphase transition.  (+info)

Dorsal-ventral patterning in Drosophila: DNA binding of snail protein to the single-minded gene. (66/342)

The Drosophila snail gene is required for proper mesodermal development. Genetic studies suggest that it functions by repressing adjacent ectodermal gene expression including that of the single-minded (sim) gene. The snail gene encodes a protein with a zinc-finger motif, and here we report that the snail gene product is a sequence-specific DNA binding protein. The snail protein recognizes a 14-base-pair consensus sequence that is found nine times in a 2.8-kilobase sim regulatory region. These results provide evidence for the direct control of sim transcription by snail.  (+info)

Kruppel is a gap gene in the intermediate germband insect Oncopeltus fasciatus and is required for development of both blastoderm and germband-derived segments. (67/342)

Segmentation in long germband insects such as Drosophila occurs essentially simultaneously across the entire body. A cascade of segmentation genes patterns the embryo along its anterior-posterior axis via subdivision of the blastoderm. This is in contrast to short and intermediate germband modes of segmentation where the anterior segments are formed during the blastoderm stage and the remaining posterior segments arise at later stages from a posterior growth zone. The biphasic character of segment generation in short and intermediate germ insects implies that different formative mechanisms may be operating in blastoderm-derived and germband-derived segments. In Drosophila, the gap gene Kruppel is required for proper formation of the central portion of the embryo. This domain of Kruppel activity in Drosophila corresponds to a region that in short and intermediate germband insects spans both blastoderm and germband-derived segments. We have cloned the Kruppel homolog from the milkweed bug, Oncopeltus fasciatus (Hemiptera, Lygaeidae), an intermediate germband insect. We find that Oncopeltus Kruppel is expressed in a gap-like domain in the thorax during the blastoderm and germband stages of embryogenesis. In order to investigate the function of Kruppel in Oncopeltus segmentation, we generated knockdown phenotypes using RNAi. Loss of Kruppel activity in Oncopeltus results in a large gap phenotype, with loss of the mesothoracic through fourth abdominal segments. Additionally, we find that Kruppel is required to suppress both anterior and posterior Hox gene expression in the central portion of the germband. Our results show that Kruppel is required for both blastoderm-derived and germband-derived segments and indicate that Kruppel function is largely conserved in Oncopeltus and Drosophila despite their divergent embryogenesis.  (+info)

Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster. (68/342)

Genetic studies have revealed that segment determination in Drosophila melanogaster is based on hierarchical regulatory interactions among maternal coordinate and zygotic segmentation genes. The gap gene system constitutes the most upstream zygotic layer of this regulatory hierarchy, responsible for the initial interpretation of positional information encoded by maternal gradients. We present a detailed analysis of regulatory interactions involved in gap gene regulation based on gap gene circuits, which are mathematical gene network models used to infer regulatory interactions from quantitative gene expression data. Our models reproduce gap gene expression at high accuracy and temporal resolution. Regulatory interactions found in gap gene circuits provide consistent and sufficient mechanisms for gap gene expression, which largely agree with mechanisms previously inferred from qualitative studies of mutant gene expression patterns. Our models predict activation of Kr by Cad and clarify several other regulatory interactions. Our analysis suggests a central role for repressive feedback loops between complementary gap genes. We observe that repressive interactions among overlapping gap genes show anteroposterior asymmetry with posterior dominance. Finally, our models suggest a correlation between timing of gap domain boundary formation and regulatory contributions from the terminal maternal system.  (+info)

Heads or tails: host-parasite interactions in the Drosophila-Wolbachia system. (69/342)

Wolbachia strains are endosymbiotic bacteria typically found in the reproductive tracts of arthropods. These bacteria manipulate host reproduction to ensure maternal transmission. They are usually transmitted vertically, so it has been predicted that they have evolved a mechanism to target the host's germ cells during development. Through cytological analysis we found that Wolbachia strains display various affinities for the germ line of Drosophila. Different Wolbachia strains show posterior, anterior, or cortical localization in Drosophila embryos, and this localization is congruent with the classification of the organisms based on the wsp (Wolbachia surface protein) gene sequence. This embryonic distribution pattern is established during early oogenesis and does not change until late stages of embryogenesis. The posterior and anterior localization of Wolbachia resembles that of oskar and bicoid mRNAs, respectively, which define the anterior-posterior axis in the Drosophila oocyte. By comparing the properties of a single Wolbachia strain in different host backgrounds and the properties of different Wolbachia strains in the same host background, we concluded that bacterial factors determine distribution, while bacterial density seems to be limited by the host. Possible implications concerning cytoplasmic incompatibility and evolution of strains are discussed.  (+info)

Ultrastructural and immunohistochemical characterization of the bovine epiblast. (70/342)

The epiblast represents the final embryonic founder cell population with the potential for giving rise to all cell types of the adult body. The pluripotency of the epiblast is lost during the process of gastrulation. Large animal species have a lack of specific markers for pluripotency. The aim of the present study was to characterize the bovine epiblast cell population and to provide such markers. Bovine Day 12 and Day 14 embryos were processed for transmission-electron microscopy or immunohistochemistry. In Day 12 embryos, two cell populations of the epiblast were identified: one constituting a distinctive basal layer apposing the hypoblast, and one arranged inside or above the former layer, including cells apposing the Rauber layer. Immunohistochemically, staining for the octamer-binding transcription factor 4 (OCT4, also known as POU5F1), revealed a specific and exclusive staining of nuclei of the complete epiblast. Colocalization of vimentin and OCT4 was demonstrated. Only trophectodermal cells stained for alkaline phosphatase. Staining for the proliferation marker Ki-67 was localized to most nuclei throughout the epiblast. A continuous staining for zonula occludens-1 protein was found between cells of the trophectoderm and hypoblast but was not evident in the epiblast. A basement membrane, detected by staining for laminin, formed a "cup-like" structure in which the epiblast was located. The ventrolateral sides of the cup appeared to be incomplete. In conclusion, the bovine epiblast includes at least two cell subpopulations, and OCT4 was shown, to our knowledge for the first time, to be localized exclusively to epiblast cells in this species.  (+info)

DRhoGEF2 regulates actin organization and contractility in the Drosophila blastoderm embryo. (71/342)

Morphogenesis of the Drosophila melanogaster embryo is associated with a dynamic reorganization of the actin cytoskeleton that is mediated by small GTPases of the Rho family. Often, Rho1 controls different aspects of cytoskeletal function in parallel, requiring a complex level of regulation. We show that the guanine triphosphate (GTP) exchange factor DRhoGEF2 is apically localized in epithelial cells throughout embryogenesis. We demonstrate that DRhoGEF2, which has previously been shown to regulate cell shape changes during gastrulation, recruits Rho1 to actin rings and regulates actin distribution and actomyosin contractility during nuclear divisions, pole cell formation, and cellularization of syncytial blastoderm embryos. We propose that DRhoGEF2 activity coordinates contractile actomyosin forces throughout morphogenesis in Drosophila by regulating the association of myosin with actin to form contractile cables. Our results support the hypothesis that specific aspects of Rho1 function are regulated by specific GTP exchange factors.  (+info)

Culture system for embryos of blue-breasted quail from the blastoderm stage to hatching. (72/342)

The blue-breasted quail (Coturnix chinensis), the smallest species in the order Galliforms, is a candidate model animal for avian developmental engineering because it is precocious and prolific. This species requires 17 days to hatch and 8 to 9 weeks to mature to an adult body weight of about 50 g, whereas the Japanese quail (Coturnix japonica) requires 16 days to hatch and 6 to 8 weeks to mature to an adult body weight of 100 to 150 g. The early embryo is the most challenging embryonic stage in terms of culture and manipulation for avian biotechnology. We have evaluated various conditions for the culture of blue-breasted quail embryos from the blastoderm stage to hatching. A hatchability rate of 26% (10/39) is among the best of the various culture conditions examined in the present study and the embryo culture system should facilitate advances in avian biotechnology.  (+info)