Inhalational anthrax outbreak among postal workers, Washington, D.C., 2001. (73/535)

In October 2001, four cases of inhalational anthrax occurred in workers in a Washington, D.C., mail facility that processed envelopes containing Bacillus anthracis spores. We reviewed the envelopes' paths and obtained exposure histories and nasal swab cultures from postal workers. Environmental sampling was performed. A sample of employees was assessed for antibody concentrations to B. anthracis protective antigen. Case-patients worked on nonoverlapping shifts throughout the facility, suggesting multiple aerosolization events. Environmental sampling showed diffuse contamination of the facility. Potential workplace exposures were similar for the case-patients and the sample of workers. All nasal swab cultures and serum antibody tests were negative. Available tools could not identify subgroups of employees at higher risk for exposure or disease. Prophylaxis was necessary for all employees. To protect postal workers against bioterrorism, measures to reduce the risk of occupational exposure are necessary.  (+info)

Surveillance for anthrax cases associated with contaminated letters, New Jersey, Delaware, and Pennsylvania, 2001. (74/535)

In October 2001, two inhalational anthrax and four cutaneous anthrax cases, resulting from the processing of Bacillus anthracis-containing envelopes at a New Jersey mail facility, were identified. Subsequently, we initiated stimulated passive hospital-based and enhanced passive surveillance for anthrax-compatible syndromes. From October 24 to December 17, 2001, hospitals reported 240,160 visits and 7,109 intensive-care unit admissions in the surveillance area (population 6.7 million persons). Following a change of reporting criteria on November 8, the average of possible inhalational anthrax reports decreased 83% from 18 to 3 per day; the proportion of reports requiring follow-up increased from 37% (105/286) to 41% (47/116). Clinical follow-up was conducted on 214 of 464 possible inhalational anthrax patients and 98 possible cutaneous anthrax patients; 49 had additional laboratory testing. No additional cases were identified. To verify the limited scope of the outbreak, surveillance was essential, though labor-intensive. The flexibility of the system allowed interim evaluation, thus improving surveillance efficiency.  (+info)

Bioterrorism-related anthrax surveillance, Connecticut, September-December, 2001. (75/535)

On November 19, 2001, a case of inhalational anthrax was identified in a 94-year-old Connecticut woman, who later died. We conducted intensive surveillance for additional anthrax cases, which included collecting data from hospitals, emergency departments, private practitioners, death certificates, postal facilities, veterinarians, and the state medical examiner. No additional cases of anthrax were identified. The absence of additional anthrax cases argued against an intentional environmental release of Bacillus anthracis in Connecticut and suggested that, if the source of anthrax had been cross-contaminated mail, the risk for anthrax in this setting was very low. This surveillance system provides a model that can be adapted for use in similar emergency settings.  (+info)

Call-tracking data and the public health response to bioterrorism-related anthrax. (76/535)

After public notification of confirmed cases of bioterrorism-related anthrax, the Centers for Disease Control and Prevention's Emergency Operations Center responded to 11,063 bioterrorism-related telephone calls from October 8 to November 11, 2001. Most calls were inquiries from the public about anthrax vaccines (58.4%), requests for general information on bioterrorism prevention (14.8%), and use of personal protective equipment (12.0%); 882 telephone calls (8.0%) were referred to the state liaison team for follow-up investigation. Of these, 226 (25.6%) included reports of either illness clinically confirmed to be compatible with anthrax or direct exposure to an environment known to be contaminated with Bacillus anthracis. The remaining 656 (74.4%) included no confirmed illness but reported exposures to "suspicious" packages or substances or the receipt of mail through a contaminated facility. Emergency response staff must handle high call volumes following suspected or actual bioterrorist attacks. Standardized health communication protocols that address contact with unknown substances, handling of suspicious mail, and clinical evaluation of suspected cases would allow more efficient follow-up investigations of clinically compatible cases in high-risk groups.  (+info)

Coordinated response to reports of possible anthrax contamination, Idaho, 2001. (77/535)

In 2001, the intentional release of anthrax spores in the eastern United States increased concern about exposure to anthrax nationwide, and residents of Idaho sought assistance. Response from state and local agencies was required, increasing the strain on epidemiologists, laboratorians, and communications personnel. In late 2001, Idaho's public health communications system handled 133 calls about suspicious powders. For each call, a multiagency bridge call was established, and participants (public health officials, epidemiologists, police, Federal Bureau of Investigation personnel, hazardous materials officials, and others) determined which samples would be tested by the state public health laboratory. A triage system for calls helped relieve the burden on public safety and health systems.  (+info)

Laboratory response to anthrax bioterrorism, New York City, 2001. (78/535)

In October 2001, the greater New York City Metropolitan Area was the scene of a bioterrorism attack. The scale of the public response to this attack was not foreseen and threatened to overwhelm the Bioterrorism Response Laboratory's (BTRL) ability to process and test environmental samples. In a joint effort with the Centers for Disease Control and Prevention and the cooperation of the Department of Defense, a massive effort was launched to maintain and sustain the laboratory response and return test results in a timely fashion. This effort was largely successful. The development and expansion of the facility are described, as are the special needs of a BTRL. The establishment of a Laboratory Bioterrorism Command Center and protocols for sample intake, processing, reporting, security, testing, staffing, and and quality control are also described.  (+info)

Specific, sensitive, and quantitative enzyme-linked immunosorbent assay for human immunoglobulin G antibodies to anthrax toxin protective antigen. (79/535)

The bioterrorism-associated human anthrax epidemic in the fall of 2001 highlighted the need for a sensitive, reproducible, and specific laboratory test for the confirmatory diagnosis of human anthrax. The Centers for Disease Control and Prevention developed, optimized, and rapidly qualified an enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G (IgG) antibodies to Bacillus anthracis protective antigen (PA) in human serum. The qualified ELISA had a minimum detection limit of 0.06 micro g/mL, a reliable lower limit of detection of 0.09 micro g/mL, and a lower limit of quantification in undiluted serum specimens of 3.0 micro g/mL anti-PA IgG. The diagnostic sensitivity of the assay was 97.8%, and the diagnostic specificity was 97.6%. A competitive inhibition anti-PA IgG ELISA was also developed to enhance diagnostic specificity to 100%. The anti-PA ELISAs proved valuable for the confirmation of cases of cutaneous and inhalational anthrax and evaluation of patients in whom the diagnosis of anthrax was being considered.  (+info)

Molecular subtyping of Bacillus anthracis and the 2001 bioterrorism-associated anthrax outbreak, United States. (80/535)

Molecular subtyping of Bacillus anthracis played an important role in differentiating and identifying strains during the 2001 bioterrorism-associated outbreak. Because B. anthracis has a low level of genetic variability, only a few subtyping methods, with varying reliability, exist. We initially used multiple-locus variable-number tandem repeat analysis (MLVA) to subtype 135 B. anthracis isolates associated with the outbreak. All isolates were determined to be of genotype 62, the same as the Ames strain used in laboratories. We sequenced the protective antigen gene (pagA) from 42 representative outbreak isolates and determined they all had a pagA sequence indistinguishable from the Ames strain (PA genotype I). MLVA and pagA sequencing were also used on DNA from clinical specimens, making subtyping B. anthracis possible without an isolate. Use of high-resolution molecular subtyping determined that all outbreak isolates were indistinguishable by the methods used and probably originated from a single source. In addition, subtyping rapidly identified laboratory contaminants and nonoutbreak-related isolates.  (+info)