Analysis of the fine specificity of Tn-binding proteins using synthetic glycopeptide epitopes and a biosensor based on surface plasmon resonance spectroscopy. (65/3180)

Using synthetic Tn (GalNAc-O-Ser/Thr) glycopeptide models and a biosensor based on surface plasmon resonance spectroscopy we have determined that isolectin B4 from Vicia villosa (VVLB4) binds to one Tn determinant whereas the anti-Tn monoclonal antibodies 83D4 and MLS128 require at least two Tn residues for recognition. When an unglycosylated amino acid is introduced between the Tn residues, both antibodies do not bind. MLS128 affinity was higher on a glycopeptide with three consecutive Tn residues. These results indicate that Tn residues organized in clusters are essential for the binding of these antibodies and indicate a different Tn recognition pattern for VVLB4.  (+info)

Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. (66/3180)

Here we describe an alternative approach to currently used cytotoxicity analyses through applying eukaryotic microbial biosensors. The yeast Saccharomyces cerevisiae was genetically modified to express firefly luciferase, generating a bioluminescent yeast strain. The presence of any toxic chemical that interfered with the cells' metabolism resulted in a quantitative decrease in bioluminescence. In this study, it was demonstrated that the luminescent yeast strain senses chemicals known to be toxic to eukaryotes in samples assessed as nontoxic by prokaryotic biosensors. As the cell wall and adaptive mechanisms of S. cerevisiae cells enhance stability and protect from extremes of pH, solvent exposure, and osmotic shock, these inherent properties were exploited to generate a biosensor that should detect a wide range of both organic and inorganic toxins under extreme conditions.  (+info)

Interstitial glucose concentration and glycemia: implications for continuous subcutaneous glucose monitoring. (67/3180)

The changes in plasma glucose concentration and in interstitial glucose concentration, determined with a miniaturized subcutaneous glucose sensor, were investigated in anesthetized nondiabetic rats. Interstitial glucose was estimated through two different calibration procedures. First, after a glucose load, the magnitude of the increase in interstitial glucose, estimated through a one-point calibration procedure, was 70% of that in plasma glucose. We propose that this is due to the effect of endogenous insulin on peripheral glucose uptake. Second, during the spontaneous secondary decrease in plasma glucose after the glucose load, interstitial glucose decreased faster than plasma glucose, which may also be due to the effect of insulin on peripheral glucose uptake. Third, during insulin-induced hypoglycemia, the decrease in interstitial glucose was less marked than that of plasma glucose, suggesting that hypoglycemia suppressed transfer of glucose into the interstitial tissue; subsequently, interstitial glucose remained lower than plasma glucose during its return to basal value, suggesting that the stimulatory effect of insulin on peripheral glucose uptake was protracted. If these observations obtained in rats are relevant to human physiology, such discrepancies between plasma and interstitial glucose concentration may have major implications for the use of a subcutaneous glucose sensor in continuous blood glucose monitoring in diabetic patients.  (+info)

Monoclonal antibodies to the hypervariable region 1 of hepatitis C virus capture virus and inhibit virus adsorption to susceptible cells in vitro. (68/3180)

To analyze the neutralizing-related activity of antibodies against the hypervariable region 1 (HVR1) of hepatitis C virus (HCV) in more detail, monoclonal antibodies (mAbs) against HVR1 were raised by immunizing various strains of mice with one of two synthetic HVR1 peptides that had been derived from two isolates of HCV. The epitope specificity of all six mAbs could be assigned by the use of a series of linear peptides in competitive ELISA. It seems that most subregions in the amino acid sequence of HVR1 can induce a humoral immune response in mice. All three mAbs specific to HVR1-6-1 had the ability to capture homologous HCV-6 and inhibit its absorption to susceptible cells in vitro despite the fact that the epitope of each mAb was at a different location in HVR1, whereas the other three mAbs specific to HVR1-7 could not capture HCV-6 nor inhibit the absorption of HCV-6 to susceptible cells. The data in this study suggest that mAbs against HVR1 can prevent the infectivity of HCV in an isolate-specific and epitope position-independent manner.  (+info)

Generation of a dual-labeled fluorescence biosensor for Crk-II phosphorylation using solid-phase expressed protein ligation. (69/3180)

BACKGROUND: The site-specific chemical modification of proteins has proved to be extremely powerful for generating tools for the investigation of biological processes. Although a few elegant methods exist for engineering a recombinant protein at a unique position, these techniques cannot be easily extended to allow several different chemical probes to be specifically introduced into a target sequence. As such multiply labeled proteins could be used to study many biological processes, and in particular biomolecular interactions, we decided to investigate whether such protein reagents could be generated using an extension of the semisynthesis technique known as expressed protein ligation. RESULTS: A solid-phase expressed protein ligation (SPPL) technology is described that enables large semisynthetic proteins to be assembled on a solid support by the controlled sequential ligation of a series of recombinant and synthetic polypeptide building blocks. This modular approach allows multiple, different chemical modifications to be introduced site-specifically into a target protein. This process, which is analogous to solid-phase peptide synthesis, was used to dual-label the amino and carboxyl termini of the Crk-II adapter protein with the fluorescence resonance energy transfer pair tetramethylrhodamine and fluorescein, respectively. The resulting construct reports (through a fluorescence change) the phosphorylation of Crk-II by the nonreceptor protein tyrosine kinase, c-Abl, and was used to probe the protein-protein interactions that regulate this important post-translational process. CONCLUSIONS: SPPL provides a powerful method for specifically modifying proteins at multiple sites, as was demonstrated by generating a protein-based biosensor for Crk-II phosphorylation. Such protein derivatives are extremely useful for investigating protein function in vitro and potentially in vivo. This modular approach should be applicable to many different protein systems.  (+info)

Phytoreovirus T = 1 core plays critical roles in organizing the outer capsid of T = 13 quasi-equivalence. (70/3180)

The structures of the double-shelled rice dwarf virus and of its single-shell core have been determined by cryoelectron microscopy and image reconstruction. The core carries a prominent density located at each of the icosahedral faces of its T = 1 lattice. These protrusions are formed by outer shell trimers, tightly inserted at the threefold positions of the core. Such configuration of the core may guide the assembly of the outer shell, aided by lateral interactions between its subunits, into a T = 13 lattice. The organization of the phytoreovirus capsid elucidates for the first time a general model for assembling two unique T numbers of quasi-equivalence.  (+info)

Each of the three binding sites on complement factor H interacts with a distinct site on C3b. (71/3180)

Factor H (fH) restricts activation of the alternative pathway of complement at the level of C3, both in the fluid phase and on self-structures, but allows the activation to proceed on foreign structures. To study the interactions between fH and C3b we used surface plasmon resonance analysis (Biacore(R)) and eight recombinantly expressed fH constructs containing fragments of the 20 short consensus repeat domains (SCRs) of fH. We analyzed the binding of these constructs to C3b and its cleavage products C3c and C3d. Three binding sites for C3b were found on fH. Site 1 was localized to the five amino-terminal SCRs (SCR1-5), and its reciprocal binding site on C3b was found to be lost upon the cleavage of C3b to C3c and C3d. Site 2 on fH was localized by exclusion probably within or near SCRs 12-14 (fragment SCR8-20 bound to C3b, C3c, and C3d; SCR8-11 did not bind to C3b at all; and SCR15-20 bound only to the C3d part of C3b). Site 3 on fH for C3b was localized to the carboxyl-terminal SCRs 19-20, and its reciprocal binding site was mapped to the C3d part of C3b. In conclusion, we confirmed and mapped three binding sites on fH for C3b and demonstrated that the three binding sites on fH interact with distinct sites on C3b. Multiple reciprocal interactions between C3b and fH can provide a basis for the different reactivity of the alternative pathway with different target structures.  (+info)

Construction, production, and characterization of humanized anti-Lewis Y monoclonal antibody 3S193 for targeted immunotherapy of solid tumors. (72/3180)

The Lewis Y (Ley) antigen is a blood group-related antigen that is expressed in a high proportion of epithelial cancers (including breast, colon, ovary, and lung cancer) and is an attractive target for monoclonal antibody-directed therapy. The murine monoclonal 3S193 (IgG3) was generated in BALB/c mice by immunization with Ley-expressing cells of the MCF-7 breast carcinoma cell-line. The murine 3S193 showed high specificity for Ley in ELISA tests with synthetic Ley and Ley-containing glycoproteins and glycolipids and also reacted strongly in rosetting assays and cytotoxic tests with Ley-expressing cells. We generated a humanized form of the murine 3S193 antibody by linking cDNA sequences encoding the variable region of murine 3S913 with frameworks of the human KOL heavy chain and REI K chain. The genes for the humanized 3S193 monoclonal antibody IgG1 were transfected into mouse myeloma NS0 cells and cloned for the establishment of high antibody-producing colonies. Humanized 3S193 antibody was subsequently produced through in vitro culture and under good manufacturing practice conditions using hollow-fiber bioreactors. The purified humanized 3S193 (hu3S193) was subsequently characterized and validated for use in preliminary immunotherapy investigations. hu3S193 reacted specifically with Ley antigen, with similar avidity to the murine form. hu3S193 demonstrated potent immune effector function, with higher antibody-dependent cell-mediated cytotoxicity than its murine counterpart and potent complement-dependent cytotoxicity (ED50, 1.0 microg/ml). The in vivo immunotherapeutic potential of hu3S193 was assessed in a human breast xenograft model using MCF-7, Ley-positive cells. Six i.v. doses of up to 1 mg of hu3S193 were administered to animals bearing established tumors (120-130 mm3) with no significant effect on tumor growth. In contrast, in an MCF-7 xenograft preventive model, a 1-mg hu3S193 dosage schedule was able to significantly slow tumor growth compared with placebo and isotype-matched control IgG1 antibody. hu3S193 has promise for immunotherapy of Ley-positive tumors and is currently entering Phase I clinical trials.  (+info)