Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. (1/3180)

Binding properties of lignin peroxidase (LiP) from the basidiomycete Phanerochaete chrysosporium against a synthetic lignin (dehydrogenated polymerizate, DHP) were studied with a resonant mirror biosensor. Among several ligninolytic enzymes, only LiP specifically binds to DHP. Kinetic analysis revealed that the binding was reversible, and that the dissociation equilibrium constant was 330 microM. The LiP-DHP interaction was controlled by the ionization group with a pKa of 5.3, strongly suggesting that a specific amino acid residue plays a role in lignin binding. A one-electron transfer from DHP to oxidized intermediates LiP compounds I and II (LiPI and LiPII) was characterized by using a stopped-flow technique, showing that binding interactions of DHP with LiPI and LiPII led to saturation kinetics. The dissociation equilibrium constants for LiPI-DHP and LiPII-DHP interactions were calculated to be 350 and 250 microM, and the first-order rate constants for electron transfer from DHP to LiPI and to LiPII were calculated to be 46 and 16 s-1, respectively. These kinetic and spectral studies strongly suggest that LiP is capable of oxidizing lignin directly at the protein surface by a long-range electron transfer process. A close look at the crystal structure suggested that LiP possesses His-239 as a possible lignin-binding site on the surface, which is linked to Asp-238. This Asp residue is hydrogen-bonded to the proximal His-176. This His-Asp...proximal-His motif would be a possible electron transfer route to oxidize polymeric lignin.  (+info)

Absorption of solar radiation by an ellipsoid sensor simulated the human body. (2/3180)

Assessment of heat gain in man caused by solar radiation is one of the most important problems in research of the human heat balance outdoors. The purpose of the present study was to investigate a new method for estimation of solar heat income. Absorption of short wave radiation (direct, diffuse and reflected) was measured with an ellipsoid sensor representing a simple, physical model of man. Measurements were performed in climatic chamber with the use of an iodide CSI solar lamp. The absorbed quantity of solar radiation varied as a result of sun altitude as well as of a colour and insulation of fabric covering the ellipsoid sensor. The new coefficients derived from our investigations for estimating doses of absorbed solar radiation should be applicable for a standing man. They correlate better with mean skin temperature observed on subjects outdoor than previous results obtained based on a cylinder as an analogue model of man. The ellipsoid sensor covered by a black fabric absorbed about 6 times more of solar radiation than when covered by a white textile.  (+info)

T cell receptor and coreceptor CD8 alphaalpha bind peptide-MHC independently and with distinct kinetics. (3/3180)

The T cell surface glycoprotein CD8 enhances T cell antigen recognition by binding to MHC class I molecules. We show that human CD8 alphaalpha binds to the MHC class I molecule HLA-A2 with an extremely low affinity (Kd approximately 0.2 mM at 37 degrees C) and with kinetics that are between 2 and 3 orders of magnitude faster than reported for T cell receptor/peptide-MHC interactions. Furthermore, CD8 alphaalpha had no detectable effect on a T cell receptor (TCR) binding to the same peptide-MHC class I complex. These binding properties provide an explanation as to why the CD8/MHC class I interaction is unable to initiate cell-cell adhesion and how it can enhance TCR recognition without interfering with its specificity.  (+info)

Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands. (4/3180)

The kinetics of interaction between TCR and MHC-peptide show a general relationship between affinity and the biological response, but the reported kinetic differences between antigenic and antagonistic peptides are very small. Here, we show a remarkable difference in the kinetics of TCR interactions with strong agonist ligands at 37 degrees C compared to 25 degrees C. This difference is not seen with antagonist/positive selecting ligands. The interaction at 37 degrees C shows biphasic binding kinetics best described by a model of TCR dimerization. The altered kinetics greatly increase the stability of complexes with agonist ligands, accounting for the large differences in biological response compared to other ligands. Thus, there may be an allosteric, as well as a kinetic, component to the discrimination between agonists and antagonists.  (+info)

Evaluation of relative contributions of two enzymes supposed to metabolise hydrogen peroxide in Paracoccus denitrificans. (5/3180)

A biosensor exploiting an electrochemically mediated enzyme-catalysed reaction was used to quantify relative contributions of cytoplasmic catalase and periplasmic cytochrome c peroxidase to the overall rate of hydrogen peroxide breakdown in cells of Paracoccus denitrificans. The effects of antimycin (an inhibitor of electron flow to cytochrome c peroxidase), the reaction rate versus substrate concentration profiles for the whole cells and subcellular fractions, and the time courses of oxygen concentration demonstrated a profound decrease in the capacity of cytochrome c peroxidase to reduce H2O2 under in vivo conditions. The reason is suggested to be a competition for available electrons between the enzyme and terminal oxidases metabolising oxygen produced by catalase.  (+info)

Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. (6/3180)

Lipoprotein lipase and the receptor-associated protein (RAP) bind to overlapping sites on the low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor (LRP). We have investigated if lipoprotein lipase interacts with the RAP binding but structurally distinct receptor sortilin/neurotensin receptor-3. We show, by chemical cross-linking and surface plasmon resonance analysis, that soluble sortilin binds lipoprotein lipase with an affinity similar to that of LRP. The binding was inhibited by heparin and RAP and by the newly discovered sortilin ligand neurotensin. In 35S-labeled 3T3-L1 adipocytes treated with the cross-linker dithiobis(succinimidyl propionate), lipoprotein lipase-containing complexes were isolated by anti-sortilin antibodies. To elucidate function in cells, sortilin-negative Chinese hamster ovary cells were transfected with full-length sortilin and shown to express about 8% of the receptors on the cell surface. These cells degraded 125I-labeled lipoprotein lipase much faster than the wild-type cells. The degradation was inhibited by unlabeled lipoprotein lipase, indicating a saturable pathway, and by RAP and heparin. Moreover, inhibition by the weak base chloroquine suggested that degradation occurs in an acidic vesicle compartment. The results demonstrate that sortilin is a multifunctional receptor that binds lipoprotein lipase and, when expressed on the cell surface, mediates its endocytosis and degradation.  (+info)

Sodium dodecyl sulfate stability of HLA-DR1 complexes correlates with burial of hydrophobic residues in pocket 1. (7/3180)

Certain class II MHC-peptide complexes are resistant to SDS-induced dissociation. This property, which has been used as an in vivo as well as an in vitro peptide binding assay, is not understood at the molecular level. Here we have investigated the mechanistic basis of SDS stability of HLA-DR1 complexes by using a biosensor-based assay and SDS-PAGE with a combination of wild-type and mutant HLA-DR1 and variants of hemagglutinin peptide HA306-318. Experiments with wild-type DR1 along with previously published results establish that the SDS-stable complexes are formed only when the hydrophobic pocket 1 (P1) is occupied by a bulky aromatic (Trp, Phe, Tyr) or an aliphatic residue (Met, Ile, Val, Leu). To further explore whether the SDS sensitivity is primarily due to the exposed hydrophobic regions, we mutated residue beta Gly86 at the bottom of P1 to tyrosine, presumably reducing the depth of the pocket and the exposure of hydrophobic residues and increasing the contacts between subunits. In direct contrast to wild-type DR1, the peptide-free mutant DR1 exists as an alpha/beta heterodimer in SDS. Moreover, the presence of a smaller hydrophobic residue, such as alanine, as P1 anchor with no contribution from any other anchor is sufficient to enhance the SDS stability of the mutant complexes, demonstrating that the basis of SDS resistance may be localized to P1 interactions. The good correlation between SDS sensitivity and the exposure of hydrophobic residues provides a biochemical rationale for the use of this assay to investigate the maturation of class II molecules and the longevity of the complexes.  (+info)

Recombinant domain IV of perlecan binds to nidogens, laminin-nidogen complex, fibronectin, fibulin-2 and heparin. (8/3180)

Domain IV of mouse perlecan, which consists of 14 immunoglobulin superfamily (IG) modules, was prepared from recombinant human cell culture medium in the form of two fragments, IV-1 (IG2-9, 100 kDa) and IV-2 (IG10-15, 66 kDa). Both fragments bound to a heparin column, being eluted at ionic strengths either below (IV-2) or above (IV-1) physiological level, and could thus be readily purified. Electron microscopy demonstrated an elongated shape (20-25 nm), and folding into a native structure was indicated by immunological assay and CD spectroscopy. Solid-phase and surface plasmon resonance assays demonstrated strong binding of fragment IV-1 to fibronectin, nidogen-1, nidogen-2 and the laminin-1-nidogen-1 complex, with Kd values in the range 4-17 nM. The latter binding apparently occurs through nidogen-1, as shown by the formation of ternary complexes. Only moderate binding was observed for fibulin-2 and collagen IV and none for fibulin-1 and BM-40. Fragment IV-2 showed a more restricted pattern of binding, with only weaker binding to fibronectin and fibulin-2. None of these activities could be demonstrated for recombinant fragments corresponding to the N-terminal perlecan domains I to III. This indicates a special role for domain IV in the integration of perlecan into basement membranes and other extracellular structures via protein-protein interactions.  (+info)