Loading...
(1/29779) Membrane-tethered Drosophila Armadillo cannot transduce Wingless signal on its own.

Drosophila Armadillo and its vertebrate homolog beta-catenin are key effectors of Wingless/Wnt signaling. In the current model, Wingless/Wnt signal stabilizes Armadillo/beta-catenin, which then accumulates in nuclei and binds TCF/LEF family proteins, forming bipartite transcription factors which activate transcription of Wingless/Wnt responsive genes. This model was recently challenged. Overexpression in Xenopus of membrane-tethered beta-catenin or its paralog plakoglobin activates Wnt signaling, suggesting that nuclear localization of Armadillo/beta-catenin is not essential for signaling. Tethered plakoglobin or beta-catenin might signal on their own or might act indirectly by elevating levels of endogenous beta-catenin. We tested these hypotheses in Drosophila by removing endogenous Armadillo. We generated a series of mutant Armadillo proteins with altered intracellular localizations, and expressed these in wild-type and armadillo mutant backgrounds. We found that membrane-tethered Armadillo cannot signal on its own; however it can function in adherens junctions. We also created mutant forms of Armadillo carrying heterologous nuclear localization or nuclear export signals. Although these signals alter the subcellular localization of Arm when overexpressed in Xenopus, in Drosophila they have little effect on localization and only subtle effects on signaling. This supports a model in which Armadillo's nuclear localization is key for signaling, but in which Armadillo intracellular localization is controlled by the availability and affinity of its binding partners.  (+info)

(2/29779) Meiosis: MeiRNA hits the spot.

The protein Mei2 performs at least two functions required in fission yeast for the switch from mitotic to meiotic cell cycles. One of these functions also requires meiRNA. It appears that meiRNA targets Mei2 to the nucleus, where it can promote the first meiotic division.  (+info)

(3/29779) Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice.

The mammalian lung expresses water channel aquaporin-1 (AQP1) in microvascular endothelia and aquaporin-4 (AQP4) in airway epithelia. To test whether these water channels facilitate fluid movement between airspace, interstitial, and capillary compartments, we measured passive and active fluid transport in AQP1 and AQP4 knockout mice. Airspace-capillary osmotic water permeability (Pf) was measured in isolated perfused lungs by a pleural surface fluorescence method. Pf was remarkably reduced in AQP1 (-/-) mice (measured in cm/s x 0.001, SE, n = 5-10: 17 +/- 2 [+/+]; 6.6 +/- 0.6 AQP1 [+/-]; 1.7 +/- 0.3 AQP1 [-/-]; 12 +/- 1 AQP4 [-/-]). Microvascular endothelial water permeability, measured by a related pleural surface fluorescence method in which the airspace was filled with inert perfluorocarbon, was reduced more than 10-fold in AQP1 (-/-) vs. (+/+) mice. Hydrostatically induced lung interstitial and alveolar edema was measured by a gravimetric method and by direct measurement of extravascular lung water. Both approaches indicated a more than twofold reduction in lung water accumulation in AQP1 (-/-) vs. (+/+) mice in response to a 5- to 10-cm H2O increase in pulmonary artery pressure for five minutes. Active, near-isosmolar alveolar fluid absorption (Jv) was measured in in situ perfused lungs using 125I-albumin as an airspace fluid volume marker. Jv (measured in percent fluid uptake at 30 min, n = 5) in (+/+) mice was 6.0 +/- 0.6 (37 degrees C), increased to 16 +/- 1 by beta-agonists, and inhibited to less than 2.0 by amiloride, ouabain, or cooling to 23 degrees C. Jv (with isoproterenol) was not affected by aquaporin deletion (18.9 +/- 2.2 [+/+]; 16.4 +/- 1.5 AQP1 [-/-]; 16.3 +/- 1.7 AQP4 [-/-]). These results indicate that osmotically driven water transport across microvessels in adult lung occurs by a transcellular route through AQP1 water channels and that the microvascular endothelium is a significant barrier for airspace-capillary osmotic water transport. AQP1 facilitates hydrostatically driven lung edema but is not required for active near-isosmolar absorption of alveolar fluid.  (+info)

(4/29779) Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation.

In COS cells, Ral GDP dissociation stimulator (RalGDS)-induced Ral activation was stimulated by RasG12V or a Rap1/Ras chimera in which the N-terminal region of Rap1 was ligated to the C-terminal region of Ras but not by Rap1G12V or a Ras/Rap1 chimera in which the N-terminal region of Ras was ligated to the C-terminal region of Rap1, although RalGDS interacted with these small GTP-binding proteins. When RasG12V, Ral and the Rap1/Ras chimera were individually expressed in NIH3T3 cells, they localized to the plasma membrane. Rap1Q63E and the Ras/Rap1 chimera were detected in the perinuclear region. When RalGDS was expressed alone, it was abundant in the cytoplasm. When coexpressed with RasG12V or the Rap1/Ras chimera, RalGDS was detected at the plasma membrane, whereas when coexpressed with Rap1Q63E or the Ras/Rap1 chimera, RalGDS was observed in the perinuclear region. RalGDS which was targeted to the plasma membrane by the addition of Ras farnesylation site (RalGDS-CAAX) activated Ral in the absence of RasG12V. Although RalGDS did not stimulate the dissociation of GDP from Ral in the absence of the GTP-bound form of Ras in a reconstitution assay using the liposomes, RalGDS-CAAX could stimulate it without Ras. RasG12V activated Raf-1 when they were coexpressed in Sf9 cells, whereas RasG12V did not affect the RalGDS activity. These results indicate that Ras recruits RalGDS to the plasma membrane and that the translocated RalGDS induces the activation of Ral, but that Rap1 does not activate Ral due to distinct subcellular localization.  (+info)

(5/29779) A single membrane-embedded negative charge is critical for recognizing positively charged drugs by the Escherichia coli multidrug resistance protein MdfA.

The nature of the broad substrate specificity phenomenon, as manifested by multidrug resistance proteins, is not yet understood. In the Escherichia coli multidrug transporter, MdfA, the hydrophobicity profile and PhoA fusion analysis have so far identified only one membrane-embedded charged amino acid residue (E26). In order to determine whether this negatively charged residue may play a role in multidrug recognition, we evaluated the expression and function of MdfA constructs mutated at this position. Replacing E26 with the positively charged residue lysine abolished the multidrug resistance activity against positively charged drugs, but retained chloramphenicol efflux and resistance. In contrast, when the negative charge was preserved in a mutant with aspartate instead of E26, chloramphenicol recognition and transport were drastically inhibited; however, the mutant exhibited almost wild-type multidrug resistance activity against lipophilic cations. These results suggest that although the negative charge at position 26 is not essential for active transport, it dictates the multidrug resistance character of MdfA. We show that such a negative charge is also found in other drug resistance transporters, and its possible significance regarding multidrug resistance is discussed.  (+info)

(6/29779) Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation.

The proton motive force (PMF) renders protein translocation across the Escherichia coli membrane highly efficient, although the underlying mechanism has not been clarified. The membrane insertion and deinsertion of SecA coupled to ATP binding and hydrolysis, respectively, are thought to drive the translocation. We report here that PMF significantly decreases the level of membrane-inserted SecA. The prlA4 mutation of SecY, which causes efficient protein translocation in the absence of PMF, was found to reduce the membrane-inserted SecA irrespective of the presence or absence of PMF. The PMF-dependent decrease in the membrane-inserted SecA caused an increase in the amount of SecA released into the extra-membrane milieu, indicating that PMF deinserts SecA from the membrane. The PMF-dependent deinsertion reduced the amount of SecA required for maximal translocation activity. Neither ATP hydrolysis nor exchange with external SecA was required for the PMF-dependent deinsertion of SecA. These results indicate that the SecA deinsertion is a limiting step of protein translocation and is accelerated by PMF, efficient protein translocation thereby being caused in the presence of PMF.  (+info)

(7/29779) The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase.

Stimulation of the hepatocyte growth factor (HGF) receptor tyrosine kinase, Met, induces mitogenesis, motility, invasion, and branching tubulogenesis of epithelial and endothelial cell lines in culture. We have previously shown that Gab1 is the major phosphorylated protein following stimulation of the Met receptor in epithelial cells that undergo a morphogenic program in response to HGF. Gab1 is a member of the family of IRS-1-like multisubstrate docking proteins and, like IRS-1, contains an amino-terminal pleckstrin homology domain, in addition to multiple tyrosine residues that are potential binding sites for proteins that contain SH2 or PTB domains. Following stimulation of epithelial cells with HGF, Gab1 associates with phosphatidylinositol 3-kinase and the tyrosine phosphatase SHP2. Met receptor mutants that are impaired in their association with Gab1 fail to induce branching tubulogenesis. Overexpression of Gab1 rescues the Met-dependent tubulogenic response in these cell lines. The ability of Gab1 to promote tubulogenesis is dependent on its pleckstrin homology domain. Whereas the wild-type Gab1 protein is localized to areas of cell-cell contact, a Gab1 protein lacking the pleckstrin homology domain is localized predominantly in the cytoplasm. Localization of Gab1 to areas of cell-cell contact is inhibited by LY294002, demonstrating that phosphatidylinositol 3-kinase activity is required. These data show that Gab1 is an important mediator of branching tubulogenesis downstream from the Met receptor and identify phosphatidylinositol 3-kinase and the Gab1 pleckstrin homology domain as crucial for subcellular localization of Gab1 and biological responses.  (+info)

(8/29779) Vascular endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells: a role for tissue factor gene expression.

Vascular endothelial growth factor (VEGF) is a potent angiogenic inducer that stimulates the expression of tissue factor (TF), the major cellular initiator of blood coagulation. Here we show that signaling triggered by VEGF induced DNA-binding and transcriptional activities of nuclear factor of activated T cells (NFAT) and AP-1 in human umbilical vein endothelial cells (HUVECs). VEGF also induced TF mRNA expression and gene promoter activation by a cyclosporin A (CsA)-sensitive mechanism. As in lymphoid cells, NFAT was dephosphorylated and translocated to the nucleus upon activation of HUVECs, and these processes were blocked by CsA. NFAT was involved in the VEGF-mediated TF promoter activation as evidenced by cotransfection experiments with a dominant negative version of NFAT and site-directed mutagenesis of a newly identified NFAT site within the TF promoter that overlaps with a previously identified kappaB-like site. Strikingly, this site bound exclusively NFAT not only from nuclear extracts of HUVECs activated by VEGF, a stimulus that failed to induce NF-kappaB-binding activity, but also from extracts of cells activated with phorbol esters and calcium ionophore, a combination of stimuli that triggered the simultaneous activation of NFAT and NF-kappaB. These results implicate NFAT in the regulation of endothelial genes by physiological means and shed light on the mechanisms that switch on the gene expression program induced by VEGF and those regulating TF gene expression.  (+info)