Biobanks: transnational, European and global networks. (49/285)

Biobanks contain biological samples and associated information that are essential raw materials for advancement of biotechnology, human health, and research and development in life sciences. Population-based and disease-oriented biobanks are major biobank formats to establish the disease relevance of human genes and provide opportunities to elucidate their interaction with environment and lifestyle. The developments in personalized medicine require molecular definition of new disease subentities and biomarkers for identification of relevant patient subgroups for drug development. These emerging demands can only be met if biobanks cooperate at the transnational or even global scale. Establishment of common standards and strategies to cope with the heterogeneous legal and ethical landscape in different countries are seen as major challenges for biobank networks. The Central Research Infrastructure for Molecular Pathology (CRIP), the concept for a pan-European Biobanking and Biomolecular Resources Research Infrastructure (BBMRI), and the Organization for Economic Co-operation and Development (OECD) global Biological Resources Centres network are examples for transnational, European and global biobank networks that are described in this article.  (+info)

Biobanking for Europe. (50/285)

Biobanks are well-organized resources comprising biological samples and associated information that are accessible to scientific investigation. Across Europe, millions of samples with related data are held in different types of collections. While individual collections can be well organized and accessible, the resources are subject to fragmentation, insecurity of funding and incompleteness. To address these issues, a Biobanking and BioMolecular Resources Infrastructure (BBMRI) is to be developed across Europe, thereby implementing a European 'roadmap' for research infrastructures that was developed by a forum of EU member states and that has been received by the European Commission. In this review, we describe the work involved in preparing for the construction of BBMRI in a European and global context.  (+info)

Expression profiling of archival renal tumors by quantitative PCR to validate prognostic markers. (51/285)

Formalin-fixed paraffin-embedded (FFPE) tissues are routinely stored by most pathology departments and are a widely available resource for discovery of clinically useful biomarkers. We describe our method for optimizing quantitative reverse transcription PCR (RT-PCR) for expression analysis using frozen and archival tissue. Commonly used reference genes were evaluated for stability of expression in normal kidney and clear cell renal cell carcinoma (RCC). Optimal reference genes for calculating normalization factors for RT-PCR were ACTB, RPL13A, GUS, RPLP0, HPRT1, and SDHA when using FFPE RCC. The optimal reference genes when using frozen RCC were ACTB, RPL13A, and GUS, confirming that use of multiple reference genes improves accuracy when intact RNA from frozen renal tumors are used. Expression of 16 markers previously reported to have prognostic significance in RCC was determined in 23 matching frozen and FFPE renal tumors, representing a range of tumor grades and stages; correlation coefficient for expression measured in frozen and FFPE tumors was 0.921 (P < 0.001). All markers predicted survival when frozen tumors were used and 14 of the 16 markers predicted survival when FFPE tumors were used as the source of RNA. An optimized RT-PCR assay can accurately measure expression of most prognostic tumor markers.  (+info)

The Generation R Study Biobank: a resource for epidemiological studies in children and their parents. (52/285)

The Generation R Study is a population-based prospective cohort study from fetal life until young adulthood. The study is designed to identify early environmental and genetic causes of normal and abnormal growth, development and health from fetal life until young adulthood. In total, 9,778 mothers were enrolled in the study. Prenatal and postnatal data collection is conducted by physical examinations, questionnaires, interviews, ultrasound examinations and biological samples. Major efforts have been conducted for collecting biological specimens including DNA, blood for phenotypes and urine samples. In this paper, the collection, processing and storage of these biological specimens are described. Together with detailed phenotype measurements, these biological specimens form a unique resource for epidemiological studies focused on environmental exposures, genetic determinants and their interactions in relation to growth, health and development from fetal life onwards.  (+info)

Reduced Purkinje cell number in essential tremor: a postmortem study. (53/285)

 (+info)

Evaluation of the branched-chain DNA assay for measurement of RNA in formalin-fixed tissues. (54/285)

 (+info)

US and Scottish health professionals' attitudes toward DNA biobanking. (55/285)

 (+info)

Participant characteristics that influence consent for genetic research in a population-based survey: the Baltimore epidemiologic catchment area follow-up. (56/285)

 (+info)