Accessory DNA in the genomes of representatives of the Escherichia coli reference collection. (1/285)

Different strains of the Escherichia coli reference collection (ECOR) differ widely in chromosomal size. To analyze the nature of the differential gene pool carried by different strains, we have followed an approach in which random amplified polymorphic DNA (RAPD) was used to generate several PCR fragments. Those present in some but not all the strains were screened by hybridization to assess their distribution throughout the ECOR collection. Thirteen fragments with various degrees of occurrence were sequenced. Three of them corresponded to RAPD markers of widespread distribution. Of these, two were housekeeping genes shown by hybridization to be present in all the E. coli strains and in Salmonella enterica LT2; the third fragment contained a paralogous copy of dnaK with widespread, but not global, distribution. The other 10 RAPD markers were found in only a few strains. However, hybridization results demonstrated that four of them were actually present in a large selection of the ECOR collection (between 42 and 97% of the strains); three of these fragments contained open reading frames associated with phages or plasmids known in E. coli K-12. The remaining six fragments were present in only between one and four strains; of these, four fragments showed no similarity to any sequence in the databases, and the other two had low but significant similarity to a protein involved in the Klebsiella capsule synthesis and to RNA helicases of archaeal genomes, respectively. Their percent GC, dinucleotide content, and codon adaptation index suggested an exogenous origin by horizontal transfer. These results can be interpreted as reflecting the presence of a large pool of strain-specific genes, whose origin could be outside the species boundaries.  (+info)

Intraspecific diversity of the 23S rRNA gene and the spacer region downstream in Escherichia coli. (2/285)

The molecular microevolution of the 23S rRNA gene (rrl) plus the spacer downstream has been studied by sequencing of different operons from some representative strains of the Escherichia coli ECOR collection. The rrl gene was fully sequenced in six strains showing a total of 67 polymorphic sites, a level of variation per nucleotide similar to that found for the 16S rRNA gene (rrs) in a previous study. The size of the gene was highly conserved (2902 to 2905 nucleotides). Most polymorphic sites were clustered in five secondary-structure helices. Those regions in a large number of operons were sequenced, and several variations were found. Sequences of the same helix from two different strains were often widely divergent, and no intermediate forms existed. Intercistronic variability was detected, although it seemed to be lower than for the rrs gene. The presence of two characteristic sequences was determined by PCR analysis throughout all of the strains of the ECOR collection, and some correlations with the multilocus enzyme electrophoresis clusters were detected. The mode of variation of the rrl gene seems to be quite similar to that of the rrs gene. Homogenization of the gene families and transfer of sequences from different clonal lines could explain this pattern of variation detected; perhaps these factors are more relevant to evolution than single mutation. The spacer region between the 23S and 5S rRNA genes exhibited a highly polymorphic region, particularly at the 3' end.  (+info)

Mouse ENU mutagenesis. (3/285)

The progress of human genome sequencing is driving genetic approaches to define gene function. Strategies such as gene traps and chemical mutagenesis will soon generate a large mutant mouse resource. Point mutations induced by N -ethyl- N -nitrosourea (ENU) provide a unique mutant resource because they: (i) reflect the consequences of single gene change independent of position effects; (ii) provide a fine-structure dissection of protein function; (iii) display a range of mutant effects from complete or partial loss of function to exaggerated function; and (iv) discover gene functions in an unbiased manner. Phenotype-driven ENU screens in the mouse are emphasizing relevance to human clinical disease by targeting cardiology, physiology, neurology, immunity, hematopoiesis and mammalian development. Such approaches are extremely powerful in understanding complex human diseases and traits: the base-pair changes may accurately model base changes found in human diseases, and subtle mutant alleles in a standard genetic background provide the ability to analyze the consequences of compound genotypes. Ongoing mouse ENU mutagenesis experiments are generating a treasure trove of new mutations to allow an in-depth study of a single gene, a chromosomal region or a biological system.  (+info)

Distribution of intervening sequences in the genes for 23S rRNA and rRNA fragmentation among strains of the Salmonella reference collection B (SARB) and SARC sets. (4/285)

Intervening sequences (IVSs) occur sporadically in several bacterial genera in the genes for 23S rRNA at relatively conserved locations. They are cleaved after transcription and lead to the presence of fragmented rRNA, which is incorporated into the ribosomes without religation but is nevertheless functional. The fragmentation of rRNA and the number of IVSs in all 72 strains of the Salmonella Reference Collection B set and 16 strains of the Salmonella Reference Collection C set, which have been established on the basis of multilocus enzyme electrophoresis (MLEE), were analyzed in the present study. Fragmentation of 23S rRNA was restricted to conserved cleavage sites located at bp 550 (helix 25) and bp 1170 (helix 45), locations where IVSs have been reported. Random cleavage at sites where IVSs could not be detected was not seen. Uncleaved IVSs were not detected in any case; thus, the IVSs invariably led to rRNA fragmentation, indicating a strong selection for maintenance of RNase III cleavage sites. The distribution of the number of IVSs carried by the different strains in the seven rrl genes is diverse, and the pattern of IVS possession could not be related to the MLEE pattern among the various Salmonella strains tested; this indicates that the IVSs are frequently exchanged between strains by lateral transfer. All eight subspecies of the genus Salmonella, including subspecies V represented by Salmonella bongori, have IVSs in both helix 25 and helix 45; this indicates that IVSs entered the genus after its divergence from Escherichia coli (more than 100 million years ago) but before separation of the genus Salmonella into many forms or that they were in the ancestor but have been lost from Escherichia.  (+info)

Differences in genotypes of Helicobacter pylori from different human populations. (5/285)

DNA motifs at several informative loci in more than 500 strains of Helicobacter pylori from five continents were studied by PCR and sequencing to gain insights into the evolution of this gastric pathogen. Five types of deletion, insertion, and substitution motifs were found at the right end of the H. pylori cag pathogenicity island. Of the three most common motifs, type I predominated in Spaniards, native Peruvians, and Guatemalan Ladinos (mixed Amerindian-European ancestry) and also in native Africans and U.S. residents; type II predominated among Japanese and Chinese; and type III predominated in Indians from Calcutta. Sequences in the cagA gene and in vacAm1 type alleles of the vacuolating cytotoxin gene (vacA) of strains from native Peruvians were also more like those from Spaniards than those from Asians. These indications of relatedness of Latin American and Spanish strains, despite the closer genetic relatedness of Amerindian and Asian people themselves, lead us to suggest that H. pylori may have been brought to the New World by European conquerors and colonists about 500 years ago. This thinking, in turn, suggests that H. pylori infection might have become widespread in people quite recently in human evolution.  (+info)

Cancer gene discovery using digital differential display. (6/285)

The Cancer Gene Anatomy Project database of the National Cancer Institute has thousands of expressed sequences, both known and novel, in the form of expressed sequence tags (ESTs). These ESTs, derived from diverse normal and tumor cDNA libraries, offer an attractive starting point for cancer gene discovery. Using a data-mining tool called Digital Differential Display (DDD) from the Cancer Gene Anatomy Project database, ESTs from six different solid tumor types (breast, colon, lung, ovary, pancreas, and prostate) were analyzed for differential expression. An electronic expression profile and chromosomal map position of these hits were generated from the Unigene database. The hits were categorized into major classes of genes including ribosomal proteins, enzymes, cell surface molecules, secretory proteins, adhesion molecules, and immunoglobulins and were found to be differentially expressed in these tumorderived libraries. Genes known to be up-regulated in prostate, breast, and pancreatic carcinomas were discovered by DDD, demonstrating the utility of this technique. Two hundred known genes and 500 novel sequences were discovered to be differentially expressed in these select tumor-derived libraries. Test genes were validated for expression specificity by reverse transcription-PCR, providing a proof of concept for gene discovery by DDD. A comprehensive database of hits can be accessed at http:// htm. This solid tumor DDD database should facilitate target identification for cancer diagnostics and therapeutics.  (+info)

exl, an exchangeable genetic island in Neisseria meningitidis. (7/285)

The genetic structure and evolution of a novel exchangeable meningococcal genomic island was defined for the important human pathogen Neisseria meningitidis. In 125 meningococcal strains tested, one of three unrelated nucleotide sequences, designated exl (exchangeable locus), was found between a gene required for heme utilization, hemO, and col, encoding a putative Escherichia coli collagenase homologue. The 5' boundary of each exl cassette was the stop codon of hemO, whereas the 3' boundary was delineated by a 33-bp repeat containing neisserial uptake sequences located downstream of col. One of the three alternative exl cassettes contained the meningococcal hemoglobin receptor gene, hmbR (exl3). In other meningococcal strains, hmbR was absent from the genome and was replaced by either a nucleotide sequence containing a novel open reading frame, exl2, or a cassette containing exl3. The proteins encoded by exl2 and exl3 had no significant amino acid homology to HmbR but contained six motifs that are also present in the lipoprotein components of the lactoferrin (LbpB), transferrin (TbpB), and hemoglobin-haptoglobin (HpuA) uptake systems. To determine the evolutionary relationships among meningococci carrying hmbR, exl2, or exl3, isolates representing 92 electrophoretic types were examined. hmbR was found throughout the population structure of N. meningitidis (genetic distance, >0.425), whereas exl2 and exl3 were found in clonal groups at genetic distances of <0.2. The commensal neisserial species were identified as reservoirs for all of the exl cassettes found in meningococci. The structure of these cassettes and their correlation with clonal groups emphasize the extensive gene pool and frequent horizontal DNA transfer events that contribute to the evolution and virulence of N. meningitidis.  (+info)

Recent events and observations pertaining to smallpox virus destruction in 2002. (8/285)

To destroy all remaining stocks of variola virus on or before 31 December 2002 seems an even more compelling goal today than it did in 1999, when the 52d World Health Assembly authorized temporary retention of remaining stocks to facilitate the possible development of (1) a more attenuated, less reactogenic smallpox vaccine and (2) an antiviral drug that could be used in treatment of patients with smallpox. We believe the deadline established in 1999 should be adhered to, given the potential outcomes of present research. Although verification that every country will have destroyed its stock of virus is impossible, it is reasonable to assume that the risk of a smallpox virus release would be diminished were the World Health Assembly to call on each country to destroy its stocks of smallpox virus and to state that any person, laboratory, or country found to have virus after date x would be guilty of a crime against humanity.  (+info)