Effects of three types of oil dispersants on biodegradation of dispersed crude oil in water surrounding two Persian gulf provinces. (9/35)

 (+info)

Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices. (10/35)

 (+info)

Evaluation of changes in effluent quality from industrial complexes on the Korean nationwide scale using a self-organizing map. (11/35)

 (+info)

Performance and spatial succession of a full-scale anaerobic plant treating high-concentration cassava bioethanol wastewater. (12/35)

A novel two-phase anaerobic treatment technology was developed to treat high-concentration organic cassava bioethanol wastewater. The start-up process and contribution of organics (COD, total nitrogen, and NH4 +-N) removal in spatial succession of the whole process and spatial microbial diversity changing when sampling were analyzed. The results of the start-up phase showed that the organic loading rate could reach up to 10 kg COD/m(3)d, with the COD removal rate remaining over 90% after 25 days. The sample results indicated that the contribution of COD removal in the pre-anaerobic and anaerobic phases was 40% and 60%, respectively, with the highest efficiency of 98.5%; TN and NH4 +-N had decreased to 0.05 g/l and 0.90 g/l, respectively, and the mineralization rate of total nitrogen was 94.8%, 76.56% of which was attributed to the anaerobic part. The microbial diversity changed remarkably among different sample points depending on the physiological characteristics of identified strains. Moraxellaceae, Planococcaceae, and Prevotellaceae were dominant in the pre-anaerobic phase and Bacteroidetes, Campylobacterales, Acinetobacter, Lactobacillus, Clostridium, and Bacillus for the anaerobic phase. Methanosarcinaceae and Methanosaeta were the two main phylotypes in the anaerobic reactor.  (+info)

Influence of reactive media composition and chemical oxygen demand as methanol on autotrophic sulfur denitrification. (13/35)

Sulfur-utilizing autotrophic denitrification relies on an inorganic carbon source to reduce the nitrate by producing sulfuric acid as an end product and can be used for the treatment of wastewaters containing high levels of nitrates. In this study, sulfur-denitrifying bacteria were used in anoxic batch tests with sulfur as the electron donor and nitrate as the electron acceptor. Various medium components were tested under different conditions. Sulfur denitrification can drop the medium pH by producing acid, thus stopping the process half way. To control this mechanism, a 2:1 ratio of sulfur to oyster shell powder was used. Oyster shell powder addition to a sulfurdenitrifying reactor completely removed the nitrate. Using 50, 100, and 200 g of sulfur particles, reaction rate constants of 5.33, 6.29, and 7.96 mg(1/2)/l(1/2).h were obtained, respectively; and using 200 g of sulfur particles showed the highest nitrate removal rates. For different sulfur particle sizes ranging from small (0.85-2.0 mm), medium (2.0-4.0 mm), and large (4.0-4.75 mm), reaction rate constants of 31.56, 10.88, and 6.23 mg(1/2)/l(1/2).h were calculated. The fastest nitrate removal rate was observed for the smallest particle size. Addition of chemical oxygen demand (COD), methanol as the external carbon source, with the autotrophic denitrification in sufficiently alkaline conditions, created a balance between heterotrophic denitrification (which raises the pH) and sulfur-utilizing autotrophic denitrification, which lowers the pH.  (+info)

Utilization of natural zeolite and perlite as landfill liners for in situ leachate treatment in landfills. (14/35)

 (+info)

Spatial autocorrelation analysis of Chinese inter-provincial industrial chemical oxygen demand discharge. (15/35)

 (+info)

Decomposition analysis of wastewater pollutant discharges in industrial sectors of China (2001-2009) using the LMDI I Method. (16/35)

 (+info)