Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. (49/2760)

This paper reviews the recent discovery of clock genes that provide the mechanism for the regulation of circadian and seasonal rhythms in lower organisms and in humans and relates these clock genes to the circadian abnormalities in depression. (1) A subgroup of depressed patients have documented circadian abnormalities in mood, sleep, temperature and neuroendocrine secretion; (2) It is also suggested that seasonal affective disorder (SAD) patients may show an abnormality in their ability to shift their daily circadian rhythms in response to seasonal light changes; (3) The dramatic improvements in some depressions in response to three treatment modalities which manipulate circadian rhythms suggest that circadian abnormalities reported in patients may constitute a core component of the pathophysiology in depression; (4) Mutations in clock genes have been discovered that accelerate or delay circadian cycles; (5) It is hypothesized that 24-hour rhythm abnormalities in major depression and SAD may be due to altered clock genes.  (+info)

Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm. (50/2760)

Somitic segmentation provides the framework on which the segmental pattern of the vertebrae, some muscles and the peripheral nervous system is established. Recent evidence indicates that a molecular oscillator, the 'segmentation clock', operates in the presomitic mesoderm (PSM) to direct periodic expression of c-hairy1 and lunatic fringe (l-fng). Here, we report the identification and characterisation of a second avian hairy-related gene, c-hairy2, which also cycles in the PSM and whose sequence is closely related to the mammalian HES1 gene, a downstream target of Notch signalling in vertebrates. We show that HES1 mRNA is also expressed in a cyclic fashion in the mouse PSM, similar to that observed for c-hairy1 and c-hairy2 in the chick. In HES1 mutant mouse embryos, the periodic expression of l-fng is maintained, suggesting that HES1 is not a critical component of the oscillator mechanism. In contrast, dynamic HES1 expression is lost in mice mutant for Delta1, which are defective for Notch signalling. These results suggest that Notch signalling is required for hairy-like genes cyclic expression in the PSM.  (+info)

GABA synchronizes clock cells within the suprachiasmatic circadian clock. (51/2760)

The master clock in the suprachiasmatic nuclei (SCN) is composed of multiple, single-cell circadian clocks. We test the postulate that these individual "clock cells" can be synchronized to each other by the inhibitory transmitter gamma-aminobutyric acid (GABA). For these experiments, we monitored the firing rate rhythm of individual clock cells on fixed multielectrode plates in culture and tested the effects of GABA. The results show that the daily variation in responsiveness of the SCN to phase-shifting agents is manifested at the level of individual neurons. Moreover, GABA, acting through A-type receptors, can both phase shift and synchronize clock cells. We propose that GABA is an important synchronizer of SCN neurons in vivo.  (+info)

The capacity of mdx mouse diaphragm muscle to do oscillatory work. (52/2760)

1. Mdx mice were used as a model for Duchenne muscular dystrophy; both lack dystrophin. It was hypothesized that the mdx condition would have a marked effect on the ability of diaphragm muscle from mdx mice to do active net work and generate power. This hypothesis was tested using the work-loop technique. 2. Specific twitch force, specific tetanic force and maximum power were all significantly less in diaphragm strips from mdx mice than those from control mice. 3. In all preparations muscle length at which maximum power was achieved (Lw) was about 8% less than that at which maximum tetanic force was achieved (L0), both in mdx and control muscle. 4. The isometric force-length curve for mdx muscle was steeper on both sides of the plateau. Similarly, the curve relating net work per cycle to muscle length was steeper for mdx muscle on both sides of the plateau. 5. Maximum power of mdx muscle was achieved at a lower strain than for control muscle; maximum power occurred at a strain of 10.2% for mdx and 14.7% for control. Further increases in strain caused a marked decrease of power production in mdx muscle, whereas they caused a smaller decrease in control muscle. 6. In summary, at muscle lengths longer than Lw and at high strains, performance of mdx muscle was compromised relative to that of control muscle. Work and power were compromised more than isometric force.  (+info)

Intrinsic and extrinsic neuronal mechanisms in temporal coding: a further look at neuronal oscillations. (53/2760)

Many studies in recent years have been devoted to the detection of fast oscillations in the Central Nervous System (CNS), interpreting them as synchronizing devices. We should, however, refrain from associating too closely the two concepts of synchronization and oscillation. Whereas synchronization is a relatively well-defined concept, by contrast oscillation of a population of neurones in the CNS looks loosely defined, in the sense that both its frequency sharpness and the duration of the oscillatory episodes vary widely from case to case. Also, the functions of oscillations in the brain are multiple are not confined to synchronization. The paradigmatic instantiation of oscillation in physics is given by the harmonic oscillator, a device particularly suited to tell the time, as in clocks. We will thus examine first the case of oscillations or cycling discharges of neurones, which provide a clock or impose a "tempo" for various kinds of information processing. Neuronal oscillators are rarely just clocks clicking at a fixed frequency. Instead, their frequency is often adjustable and controllable, as in the example of the "chattering cells" discovered in the superficial layers of the visual cortex. Moreover, adjustable frequency oscillators are suitable for use in "phase locked loops" (PLL) networks, a device that can convert time coding to frequency coding; such PLL units have been found in the somatosensory cortex of guinea pigs. Finally, are oscillations stricto sensu necessary to induce synchronization in the discharges of downstream neurones? We know that this is not the case, at least not for local populations of neurones. As a contribution to this question, we propose that repeating patterns in neuronal discharges production may be looked at as one such alternative solution in relation to the processing of information. We review here the case of precisely repeating triplets, detected in the discharges of olfactory mitral cells of a freely breathing rat under odor stimulation.  (+info)

Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. (54/2760)

Regulation of the Drosophila pigment-dispersing factor (pdf) gene products was analyzed in wild-type and clock mutants. Mutations in the transcription factors CLOCK and CYCLE severely diminish pdf RNA and neuropeptide (PDF) levels in a single cluster of clock-gene-expressing brain cells, called small ventrolateral neurons (s-LN(v)s). This clock-gene regulation of specific cells does not operate through an E-box found within pdf regulatory sequences. PDF immunoreactivity exhibits daily cycling, but only within terminals of axons projecting from the s-LN(v)s. This posttranslational rhythm is eliminated by period or timeless null mutations, which do not affect PDF staining in cell bodies or pdf mRNA levels. Therefore, within these chronobiologically important neurons, separate elements of the central pacemaking machinery regulate pdf or its product in novel and different ways. Coupled with contemporary results showing a pdf-null mutant to be severely defective in its behavioral rhythmicity, the present results reveal PDF as an important circadian mediator whose expression and function are downstream of the clockworks.  (+info)

Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. (55/2760)

Although the suprachiasmatic nucleus (SCN) is the major pacemaker in mammals, the peripheral cells or immortalized cells also contain a circadian clock. The SCN and the periphery may use different entraining signals-light and some humoral factors, respectively. We show that induction of the circadian oscillation of gene expression is triggered by TPA treatment of NIH-3T3 fibroblasts, which is inhibited by a MEK inhibitor, and that prolonged activation of the MAPK cascade is sufficient to trigger circadian gene expression. Therefore, such prolonged activation of MAPK by entraining cues may be involved in the resetting of the circadian clock.  (+info)

A compound poisson process for relaxing the molecular clock. (56/2760)

The molecular clock hypothesis remains an important conceptual and analytical tool in evolutionary biology despite the repeated observation that the clock hypothesis does not perfectly explain observed DNA sequence variation. We introduce a parametric model that relaxes the molecular clock by allowing rates to vary across lineages according to a compound Poisson process. Events of substitution rate change are placed onto a phylogenetic tree according to a Poisson process. When an event of substitution rate change occurs, the current rate of substitution is modified by a gamma-distributed random variable. Parameters of the model can be estimated using Bayesian inference. We use Markov chain Monte Carlo integration to evaluate the posterior probability distribution because the posterior probability involves high dimensional integrals and summations. Specifically, we use the Metropolis-Hastings-Green algorithm with 11 different move types to evaluate the posterior distribution. We demonstrate the method by analyzing a complete mtDNA sequence data set from 23 mammals. The model presented here has several potential advantages over other models that have been proposed to relax the clock because it is parametric and does not assume that rates change only at speciation events. This model should prove useful for estimating divergence times when substitution rates vary across lineages.  (+info)