Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo. (65/216)

Neurons adapt their electrophysiological properties to maintain stable levels of electrical excitability when faced with a constantly changing environment. We find that exposing freely swimming Xenopus tadpoles to 4-5 hr of persistent visual stimulation increases the intrinsic excitability of optic tectal neurons. This increase is correlated with enhanced voltage-gated Na+ currents. The same visual stimulation protocol also induces a polyamine synthesis-dependent reduction in Ca2+-permeable AMPAR-mediated synaptic drive, suggesting that the increased excitability may compensate for this reduction. Accordingly, the change in excitability was prevented by blocking polyamine synthesis during visual stimulation and was rescued when Ca2+-permeable AMPAR-mediated transmission was selectively reduced. The changes in excitability also rendered tectal cells more responsive to synaptic burst stimuli, improving visual stimulus detection. The synaptic and intrinsic adaptations function together to keep tectal neurons within a constant operating range, while making the intact visual system less responsive to background activity yet more sensitive to burst stimuli.  (+info)

Polyamine flux in Xenopus oocytes through hemi-gap junctional channels. (66/216)

Diverse polyamine transport systems have been described in different cells, but the molecular entities that mediate polyamine influx and efflux remain incompletely defined. We have previously demonstrated that spermidine efflux from oocytes is a simple electrodiffusive process, inhibitable by external Ca2+, consistent with permeation through a membrane cation channel. Hemi-gap junctional channels in Xenopus oocytes are formed from connexin 38 (Cx38), and produce a calcium-sensitive (Ic) current that is inhibited by external Ca2+. Spermidine efflux is also calcium sensitive, and removal of external calcium increases both Ic currents and spermidine efflux in Xenopus oocytes. Injection of Cx38 cRNA or Cx38 antisense oligonucleotides (to increase or decrease, respectively, Cx38 expression) also increases or decreases spermidine efflux in parallel. Spermidine efflux has a large voltage-dependent component, which is abolished with injection of Cx38 antisense oligonucleotides. In addition, spermidine uptake is significantly increased in Cx38 cRNA-injected oocytes in the absence of external calcium. The data indicate that hemi-gap junctional channels provide the Ca2+-inhibited pathway for electrodiffusive efflux of polyamines from oocytes, and it is likely that hemi-gap junctional channels provide Ca2+ and metabolism-sensitive polyamine permeation pathways in other cells.  (+info)

Effect of the beta-adrenoceptor agonist clenbuterol and phytohaemagglutinin on growth, protein synthesis and polyamine metabolism of tissues of the rat. (67/216)

1. The kidney bean lectin, phytohaemagglutinin (PHA), induced a marked atrophy of skeletal muscle which was evident from the changes in tissue composition (protein, RNA, DNA and polyamine content) and from the reduction in weight and protein synthesis of hind leg muscles of rats fed on kidney bean-diets for four days. The beta-adrenoceptor agonist, clenbuterol, induced skeletal muscle hypertrophy by transiently stimulating protein synthesis. As a consequence, the muscle loss caused by a short exposure to PHA was, in part, ameliorated by clenbuterol treatment. 2. Cardiac muscle was affected to a lesser extent than skeletal muscle by both clenbuterol and the lectin. However, there was evidence that protein synthesis in heart was reduced by PHA. 3. PHA had opposite effects on the gut, the lectin-induced hyperplasia of the jejunum was accompanied by a large increase in protein synthesis. Clenbuterol alone had no effect on the jejunum whereas a combination of PHA and clenbuterol appeared to exacerbate the effect of the lectin on gut. 4. Both the lectin-induced gut growth and the hypertrophy of skeletal muscle caused by clenbuterol were preceded by the accumulation of polyamines in the respective tissues. Of particular note was the observation that a significant increase in the proportion of the intraperitoneally injected 14C-labelled spermidine or putrescine taken up by the growing tissues could be detected by the second day. Therefore, the measurement of uptake of labelled polyamines may be used as a sensitive indicator of early alterations in tissue metabolism.  (+info)

Putrescine-dependent invasive capacity of rat ascites hepatoma cells. (68/216)

The effects of inhibitors of polyamine synthesis on the invasive capacity of rat ascites hepatoma (LC-AH) cells were examined by in vitro assay of penetration of the LC-AH cells through a monolayer of calf pulmonary arterial endothelial (CPAE) cells. Pretreatment of LC-AH cells with alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, before seeding them onto a CPAE cell monolayer and culturing them for 24 h in the absence of DFMO decreased the number of penetrating tumor cells time and dose dependently (about 35% of the maximal inhibition) without affecting their viability or proliferative activity. DFMO treatment caused a marked decrease in the intracellular level of putrescine but not of spermidine or spermine. The DFMO-induced decreases in invasive capacity and putrescine level were almost completely reversed by the addition of putrescine to the medium during pretreatment with DFMO or invasion assay but were not affected by exogenous spermidine or spermine. No change in the invasive capacity was observed when the CPAE cells were treated with DFMO and the LC-AH cells with methylglyoxal-bis(guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase, which depressed the spermidine and spermine levels but increased the putrescine level in the LC-AH cells. These results suggest that intracellular putrescine modulates the in vitro invasive capacity of LC-AH cells.  (+info)

Synchronization of breast cancer cell proliferation in vivo by combined hormonal and polyamine manipulation. (69/216)

Optimal synchronization of breast cancer cell proliferation by hormonal means may be limited by cellular heterogeneity in sensitivity to the multistep activation of growth following initial hormone binding to the receptor. We hypothesized that induced synchronous growth may be improved by combined manipulation of the polyamine (PA) pathway since we have previously shown that PAs are distal effectors of hormonal action on proliferation in breast cancer. To test our hypothesis, we induced an initial phase of hormone and PA depletion (castration plus administration of the PA synthesis inhibitor alpha-difluoromethylornithine) in rats bearing N-nitrosomethylurea induced mammary tumors. This was followed by transition phase of hormone repletion in the presence of alpha-difluoromethylornithine (to push the cells into the proliferative cascade up to the distal step controlled by PA) and finally a phase of hormone and PA repletion. Simultaneously, groups of rats were subjected to hormone/PA depletion/repletion individually. The effects of these manipulations on the labeling indices (LIs) of glandular, myoepithelial, and nonepithelial cells were estimated by autoradiography. The combined hormone/PA manipulation yielded the highest degree of synchronization with LIs of the glandular and myoepithelial cells being approximately 2-fold over intact control after only 2 or 3 days of combined repletion. In contrast, hormone treatment alone restored the LIs of glandular cells only to control levels and minimally influenced those of myoepithelial cells. PA manipulation alone failed to affect the LIs of any cell type. Although the rate of tumor regrowth was highest with the combination treatment, the absolute tumor volumes did not differ significantly at the end of the repletion phase between the three regimens. These results indicate that combined hormone/PA manipulation provides the best "therapeutic window" (LI/tumor volume) for implementation of kinetically based cytotoxic chemotherapy.  (+info)

Onset of DNA aggregation in presence of monovalent and multivalent counterions. (70/216)

We address theoretically aggregation of DNA segments by multivalent polyamines such as spermine and spermidine. In experiments, the aggregation occurs above a certain threshold concentration of multivalent ions. We demonstrate that the dependence of this threshold on the concentration of DNA has a simple form. When the DNA concentration c(DNA) is smaller than the monovalent salt concentration, the threshold multivalent ion concentration depends linearly on c(DNA), having the form alphac(DNA) + beta. The coefficients alpha and beta are related to the density profile of multivalent counterions around isolated DNA chains, at the onset of their aggregation. This analysis agrees extremely well with recent detailed measurements on DNA aggregation in the presence of spermine. From the fit to the experimental data, the number of condensed multivalent counterions per DNA chain can be deduced. A few other conclusions can then be reached: 1), the number of condensed spermine ions at the onset of aggregation decreases with the addition of monovalent salt; 2), the Poisson-Boltzmann theory overestimates the number of condensed multivalent ions at high monovalent salt concentrations; and 3), our analysis of the data indicates that the DNA charge is not overcompensated by spermine at the onset of aggregation.  (+info)

X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. (71/216)

Polyamines (putrescine, spermidine, spermine) are ubiquitous, simple molecules that interact with a variety of other molecules in the cell, including nucleic acids, phospholipids and proteins. Various studies indicate that polyamines are essential for normal cell growth and differentiation. Furthermore, these molecules, especially spermine, have been shown to modulate ion channel activities of certain cells. Nonetheless, little is known about the specific cellular functions of these compounds, and extensive laboratory investigations have failed to identify a heritable condition in humans in which polyamine synthesis is perturbed. We report the first polyamine deficiency syndrome caused by a defect in spermine synthase (SMS). The defect results from a splice mutation, and is associated with the Snyder-Robinson syndrome (SRS, OMIM_309583), an X-linked mental retardation disorder. The affected males have mild-to-moderate mental retardation (MR), hypotonia, cerebellar circuitry dysfunction, facial asymmetry, thin habitus, osteoporosis, kyphoscoliosis, decreased activity of SMS, correspondingly low levels of intracellular spermine in lymphocytes and fibroblasts, and elevated spermidine/spermine ratios. The clinical features observed in SRS are consistent with cerebellar dysfunction and a defective functioning of red nucleus neurons, which, at least in rats, contain high levels of spermine. Additionally, the presence of MR reflects a role for spermine in cognitive function, possibly by spermine's ability to function as an 'intrinsic gateway' molecule for inward rectifier K(+) channels.  (+info)

Prevention of TNF-alpha-induced apoptosis in polyamine-depleted IEC-6 cells is mediated through the activation of ERK1/2. (72/216)

It has been documented that polyamines play a critical role in the regulation of apoptosis in intestinal epithelial cells. We have recently reported that protection from TNF-alpha/cycloheximide (CHX)-induced apoptosis in epithelial cells depleted of polyamines is mediated through the inactivation of a proapoptotic mediator, JNK. In this study, we addressed the involvement of the MAPK pathway in the regulation of apoptosis after polyamine depletion of IEC-6 cells. Polyamine depletion by alpha-difluromethylornithine (DFMO) resulted in the sustained activation of ERK in response to TNF-alpha/CHX treatment. Pretreatment of polyamine-depleted IEC-6 cells with a cell membrane-permeable MEK1/2 inhibitor, U-0126, significantly inhibited TNF-alpha/CHX-induced ERK phosphorylation and significantly increased DNA fragmentation, JNK activity, and caspase-3 activity in response to TNF-alpha/CHX. Moreover, the dose dependency of U-0126-mediated inhibition of TNF-alpha/ CHX-induced ERK phosphorylation correlated with the reversal of the antiapoptotic effect of DFMO. IEC-6 cells expressing constitutively active MEK1 had decreased TNF-alpha/CHX-induced JNK phosphorylation and were significantly protected from apoptosis. Conversely, a dominant-negative MEK1 resulted in high basal activation of JNK, cytochrome c release, and spontaneous apoptosis. Polyamine depletion of the dominant-negative MEK1 cells did not prevent JNK activation or cytochrome c release and failed to confer protection from both TNF-alpha/CHX and camptothecin-induced apoptosis. Finally, expression of a dominant-negative mutant of JNK significantly protected IEC-6 cells from TNF-alpha/CHX-induced apoptosis. These data indicate that polyamine depletion results in the activation of ERK, which inhibits JNK activation and protects cells from apoptosis.  (+info)