EPR studies of the mitochondrial alternative oxidase. Evidence for a diiron carboxylate center. (17/338)

The alternative oxidase (AOX) is a ubiquinol oxidase found in the mitochondrial respiratory chain of plants as well as some fungi and protists. It has been predicted to contain a coupled diiron center on the basis of a conserved sequence motif consisting of the proposed iron ligands, four glutamate and two histidine residues. However, this prediction has not been experimentally verified. Here we report the high level expression of the Arabidopsis thaliana alternative oxidase AOX1a as a maltose-binding protein fusion in Escherichia coli. Reduction and reoxidation of a sample of isolated E. coli membranes containing the alternative oxidase generated an EPR signal characteristic of a mixed-valent Fe(II)/Fe(III) binuclear iron center. The high anisotropy of the signal, the low value of the g-average tensor, and a small exchange coupling (-J) suggest that the iron center is hydroxo-bridged. A reduced membrane preparation yielded a parallel mode EPR signal with a g-value of about 15. In AOX containing a mutation of a putative glutamate ligand of the diiron center (E222A or E273A) the EPR signals are absent. These data provide evidence for an antiferromagnetic-coupled binuclear iron center, and together with the conserved sequence motif, identify the alternative oxidase as belonging to the growing family of diiron carboxylate proteins. The alternative oxidase is the first integral membrane protein in this family, and adds a new catalytic activity (ubiquinol oxidation) to this group of enzymatically diverse proteins.  (+info)

Apple 1-aminocyclopropane-1-carboxylate synthase in complex with the inhibitor L-aminoethoxyvinylglycine. Evidence for a ketimine intermediate. (18/338)

The 1.6-A crystal structure of the covalent ketimine complex of apple 1-aminocyclopropane-1-carboxylate (ACC) synthase with the potent inhibitor l-aminoethoxyvinylglycine (AVG) is described. ACC synthase catalyzes the committed step in the biosynthesis of ethylene, a plant hormone that is responsible for the initiation of fruit ripening and for regulating many other developmental processes. AVG is widely used in plant physiology studies to inhibit the activity of ACC synthase. The structural assignment is supported by the fact that the complex absorbs maximally at 341 nm. These results are not in accord with the recently reported crystal structure of the tomato ACC synthase AVG complex, which claims that the inhibitor only associates noncovalently. The rate constant for the association of AVG with apple ACC synthase was determined by stopped-flow spectrophotometry (2.1 x 10(5) m(-1) s(-1)) and by the rate of loss of enzyme activity (1.1 x 10(5) m(-1) s(-1)). The dissociation rate constant determined by activity recovery is 2.4 x 10(-6) s(-1). Thus, the calculated K(d) value is 10-20 pm.  (+info)

A self-replicating ligase ribozyme. (19/338)

A self-replicating molecule directs the covalent assembly of component molecules to form a product that is of identical composition to the parent. When the newly formed product also is able to direct the assembly of product molecules, the self-replicating system can be termed autocatalytic. A self-replicating system was developed based on a ribozyme that catalyzes the assembly of additional copies of itself through an RNA-catalyzed RNA ligation reaction. The R3C ligase ribozyme was redesigned so that it would ligate two substrates to generate an exact copy of itself, which then would behave in a similar manner. This self-replicating system depends on the catalytic nature of the RNA for the generation of copies. A linear dependence was observed between the initial rate of formation of new copies and the starting concentration of ribozyme, consistent with exponential growth. The autocatalytic rate constant was 0.011 min(-1), whereas the initial rate of reaction in the absence of pre-existing ribozyme was only 3.3 x 10(-11) M.min(-1). Exponential growth was limited, however, because newly formed ribozyme molecules had greater difficulty forming a productive complex with the two substrates. Further optimization of the system may lead to the sustained exponential growth of ribozymes that undergo self-replication.  (+info)

Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. (20/338)

During apoptosis, Bax-type proteins permeabilize the outer mitochondrial membrane to release intermembrane apoptogenic factors into the cytosol via a poorly understood mechanism. We have proposed that Bax and DeltaN76Bcl-x(L) (the Bax-like cleavage fragment of Bcl-x(L)) function by forming pores that are at least partially composed of lipids (lipidic pore formation). Since the membrane monolayer must bend during lipidic pore formation, we here explore the effect of intrinsic membrane monolayer curvature on pore formation. Nonlamellar lipids with positive intrinsic curvature such as lysophospholipids promoted membrane permeabilization, whereas nonlamellar lipids with negative intrinsic curvature such as diacylglycerol and phosphatidylethanolamine inhibited membrane permeabilization. The differential effects of nonlamellar lipids on membrane permeabilization were not correlated with lipid-induced changes in membrane binding or insertion of Bax or DeltaN76Bcl-x(L). Altogether, these results are consistent with a model whereby Bax-type proteins change the bending propensity of the membrane to form pores comprised at least in part of lipids in a structure of net positive monolayer curvature.  (+info)

Expression and purification of the recombinant subunits of toluene/o-xylene monooxygenase and reconstitution of the active complex. (21/338)

This paper describes the cloning of the genes coding for each component of the complex of toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1, their expression, purification and characterization. Moreover, the reconstitution of the active complex from the recombinant subunits has been obtained, and the functional role of each component in the electron transfer from the electron donor to molecular oxygen has been determined. The coexpression of subunits B, E and A leads to the formation of a subcomplex, named H, with a quaternary structure (BEA)2, endowed with hydroxylase activity. Tomo F component is an NADH oxidoreductase. The purified enzyme contains about 1 mol of FAD, 2 mol of iron, and 2 mol of acid labile sulfide per mol of protein, as expected for the presence of one [2Fe-2S] cluster, and exhibits a typical flavodoxin absorption spectrum. Interestingly, the sequence of the protein does not correspond to that previously predicted on the basis of DNA sequence. We have shown that this depends on minor errors in the gene sequence that we have corrected. C component is a Rieske-type ferredoxin, whose iron and acid labile sulfide content is in agreement with the presence of one [2Fe-2S] cluster. The cluster is very sensitive to oxygen damage. Mixtures of the subcomplex H and of the subunits F, C and D are able to oxidize p-cresol into 4-methylcathecol, thus demonstrating the full functionality of the recombinant subunits as purified. Finally, experimental evidence is reported which strongly support a model for the electron transfer. Subunit F is the first member of an electron transport chain which transfers electrons from NADH to C, which tunnels them to H subcomplex, and eventually to molecular oxygen.  (+info)

Reactions of deoxy-, oxy-, and methemoglobin with nitrogen monoxide. Mechanistic studies of the S-nitrosothiol formation under different mixing conditions. (22/338)

The reaction between hemoglobin (Hb) and NO* has been investigated thoroughly in recent years, but its mechanism is still a matter of substantial controversy. We have carried out a systematic study of the influence of the following factors on the yield of S-nitrosohemoglobin (SNO-Hb) generated from the reaction of NO* with oxy-, deoxy-, and metHb: 1) the volumetric ratio of the protein and the NO* solutions; 2) the rate of addition of the NO* solution to the protein solution; 3) the amount of NO* added; and 4) the concentration of the phosphate buffer. Our results suggest that the highest SNO-Hb yields are mostly obtained by very slow addition of substoichiometric amounts of NO* from a diluted solution. Possible pathways of SNO-Hb formation from the reaction of NO* with oxy-, deoxy-, and metHb are described. Our data strongly suggest that, because of mixing artifacts, care should be taken to use results from in vitro experiments to draw conclusion on the mechanism of the reaction in vivo.  (+info)

Quantifying robustness of biochemical network models. (23/338)

BACKGROUND: Robustness of mathematical models of biochemical networks is important for validation purposes and can be used as a means of selecting between different competing models. Tools for quantifying parametric robustness are needed. RESULTS: Two techniques for describing quantitatively the robustness of an oscillatory model were presented and contrasted. Single-parameter bifurcation analysis was used to evaluate the stability robustness of the limit cycle oscillation as well as the frequency and amplitude of oscillations. A tool from control engineering--the structural singular value (SSV)--was used to quantify robust stability of the limit cycle. Using SSV analysis, we find very poor robustness when the model's parameters are allowed to vary. CONCLUSION: The results show the usefulness of incorporating SSV analysis to single parameter sensitivity analysis to quantify robustness.  (+info)

Near-critical phenomena in intracellular metabolite pools. (24/338)

The supply and consumption of metabolites in living cells are catalyzed by enzymes. Here we consider two of the simplest schemes where one substrate is eliminated through Michaelis-Menten kinetics, and where two types of substrates are joined together by an enzyme. It is demonstrated how steady-state substrate concentrations can change ultrasensitively in response to changes in their supply rates and how this is coupled to slow relaxation back to steady state after a perturbation. In the one-substrate system, such near-critical behavior occurs when the supply rate approaches the maximal elimination rate, and in the two-substrate system it occurs when the rates of substrate supply are almost balanced. As systems that operate near criticality tend to display large random fluctuations, we also carried out a stochastic analysis using analytical approximations of master equations and compared the results with molecular-level Monte Carlo simulations. It was found that the significance of random fluctuations was directly coupled to the steady-state sensitivity and that the two substrates can fluctuate greatly because they are anticorrelated in such a way that the product formation rate displays only small variation. Basic relations are highlighted and biological implications are discussed.  (+info)