Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (-)-epicatechin. (57/2758)

(+)-Catechin and (-)-epicatechin are known to be biologically effective antioxidants present in the human diet, particularly in wine and tea. We studied the metabolism of these compounds to elucidate the truly active structures in biological fluids by their oral administration to rats. Without any treatment with beta-glucuronidase and sulfatase, a pair of metabolites were detected at much higher concentrations in the plasma, bile, and urine than the originally ingested compounds. Each major metabolite found in the plasma at the highest concentration was excreted in both the bile and urine, and was purified from urine. Their chemical structures were established to be (+)-catechin 5-O-beta-glucuronide and (-)-epicatechin 5-O-beta-glucuronide by MS and NMR analyses. These glucuronide conjugates exhibited high antioxidative activities as superoxide anion radical scavengers like their parent compounds. It is concluded that (+)-catechin 5-O-beta-glucuronide and (-)-epicatechin 5-O-beta-glucuronide are the biologically active in vivo structures of the ingested polyphenolic antioxidants.  (+info)

Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. (58/2758)

The high density lipoprotein (HDL) receptor SR-BI (scavenger receptor class B type I) mediates the selective uptake of plasma HDL cholesterol by the liver and steroidogenic tissues. As a consequence, SR-BI can influence plasma HDL cholesterol levels, HDL structure, biliary cholesterol concentrations, and the uptake, storage, and utilization of cholesterol by steroid hormone-producing cells. Here we used homozygous null SR-BI knockout mice to show that SR-BI is required for maintaining normal biliary cholesterol levels, oocyte development, and female fertility. We also used SR-BI/apolipoprotein E double homozygous knockout mice to show that SR-BI can protect against early-onset atherosclerosis. Although the mechanisms underlying the effects of SR-BI loss on reproduction and atherosclerosis have not been established, potential causes include changes in (i) plasma lipoprotein levels and/or structure, (ii) cholesterol flux into or out of peripheral tissues (ovary, aortic wall), and (iii) reverse cholesterol transport, as indicated by the significant reduction of gallbladder bile cholesterol levels in SR-BI and SR-BI/apolipoprotein E double knockout mice relative to controls. If SR-BI has similar activities in humans, it may become an attractive target for therapeutic intervention in a variety of diseases.  (+info)

Electrical physiological evidence for highand low-affinity vagal CCK-A receptors. (59/2758)

We have demonstrated that under physiological conditions CCK acts through vagal high-affinity CCK-A receptors to mediate pancreatic secretion. In this study, we evaluated the vagal afferent response to endogenous CCK in rats and defined the CCK-receptor affinity states and the vagal-receptive field responsive to CCK stimulation using electrophysiological studies. Experiments were performed on anesthetized rats prepared with bile-pancreatic fistula. Plasma CCK levels were elevated by diverting bile-pancreatic juice (BPJ). The single-unit discharge of sensory neurons supplying the gastrointestinal tract was recorded from the nodose ganglia. All units studied were either silent or they had a very low resting discharge frequency. Thirty-two single units were studied extensively; seven were shown to be stimulated by diversion of BPJ (2.6 +/- 2 impulses/min at basal to 40 +/- 12 impulses/min after diversion). Acute subdiaphragmatic vagotomy or perivagal capsaicin treatment abolished the response. The CCK-A-receptor antagonist CR-1409, but not the CCK-B antagonist L-365260, blocked the vagal response to endogenous CCK stimulation. Infusion of the low-affinity CCK-receptor antagonist CCK-JMV-180 completely blocked the vagal afferent response to the diversion of BPJ in three of seven rats tested but had no effect on the response in the remaining four. In a separate study, we demonstrated that gastric, celiac, or hepatic branch vagotomy abolished the response in different subgroups of neurons. In conclusion, under physiological conditions, CCK acts on both high- and low-affinity CCK-A receptors present on distinct vagal afferent fibers. The vagal CCK-receptor field includes the regions innervated by the gastric, celiac, and hepatic vagal branches. This study provides electrophysiological evidence that vagal CCK receptors are present on the vagal gastric, celiac, and hepatic branches and may occur in high- and low-affinity states.  (+info)

The effects of short term lipid infusion on plasma and hepatic bile lipids in humans. (60/2758)

BACKGROUND: Patients on parenteral nutrition have an increased incidence of gall bladder sludge and gallstone disease, thought to be related to bile stasis. Intravenous lipid emulsions, especially those containing medium chain triglycerides, have also been shown to have a lithogenic effect on the composition of bile in the gall bladder. AIMS: To determine whether lipid infusion influences hepatic bile composition in patients with an indwelling T tube following cholecystectomy and choledochotomy. METHODS: In eight patients undergoing the above surgical procedure, the time at which effects of the interrupted enterohepatic circulation were minimal was determined. Twenty two cholesterol gallstone patients with bile fistula were then randomised to receive an infusion of a lipid emulsion containing either long chain triglycerides or a mixture of long and medium chain triglycerides. RESULTS: Lipid infusion resulted in a significant increase in plasma levels of triglycerides and phospholipids. Both lipid emulsions caused an increase in hepatic biliary cholesterol level and cholesterol saturation index, but this effect was more pronounced with medium chain triglycerides. The fatty acid composition of biliary phospholipids showed a significant enrichment of linoleic acid by both lipid infusions. CONCLUSIONS: Infusion of triglycerides causes lithogenic changes in hepatic bile composition in humans, the lithogenic effect of infusion of medium chain triglycerides being more pronounced than that of long chain triglycerides. This effect, coupled with gall bladder stasis, may be responsible for the increased risk of biliary sludge and gallstone formation in patients on long term lipid infusion.  (+info)

In vivo formation and localization of 1,1-dichloroethylene epoxide in murine liver: identification of its glutathione conjugate 2-S-glutathionyl acetate. (61/2758)

The hepatotoxic effects induced by 1,1-dichloroethylene (DCE) are ascribed to cytochrome P-450 (CYP) 2E1-dependent formation of metabolites including 2,2-dichloroacetaldehyde and the DCE-epoxide. The DCE metabolites detected in incubations of liver microsomes are the acetal, the hydrate of 2,2-dichloroacetaldehyde, and the epoxide-derived GSH conjugates 2-S-glutathionyl acetyl glutathione ([B]) and 2-S-glutathionyl acetate ([C]). This study was undertaken to determine whether these DCE metabolites are also formed in vivo in murine liver. HPLC analysis of cytosol isolated from the livers of mice treated with [(14)C]DCE showed that [C] was the major conjugate formed, with lower levels of formation of [B]. The acetal was not detected in the cytosol. The formation of the epoxide-derived GSH conjugates was dose-dependent at 25 to 225 mg/kg DCE and occurred coincidentally with levels of covalent binding of DCE at the same doses. The acetal and conjugates [B] and [C] were also detected in bile collected from mice treated with DCE. Pretreatment of mice with buthionine sulfoximine decreased sulfhydryl levels and formation of conjugate [C], and increased DCE binding to liver proteins. In contrast, the levels of [C] and DCE binding were both reduced significantly in mice pretreated with the CYP2E1 inhibitor diallyl sulfone. Immunohistochemical studies indicated that protein adducts and conjugate [C] were localized in centrilobular hepatocytes and corresponded with the sites where CYP2E1 resided. Pretreatment with buthionine sulfoximine increased the amount of immunostaining. However, pretreatment with diallyl sulfone markedly decreased immunostaining for [C] in the hepatocytes. These results showed that 2,2-dichloroacetaldehyde and the epoxide are formed from DCE in vivo.  (+info)

Metabolism of cholesterol is altered in the liver of C3H mice fed fats enriched with different C-18 fatty acids. (62/2758)

We examined whether the degree of saturation of C-18 fatty acids influenced hepatic cholesterol metabolism in C3H mice. The mice were fed diets containing 20 g/100 g fat, enriched in stearic (18:0), oleic (18:1) or linoleic acid (18:2) with or without 1 g/100 g cholesterol. Plasma total cholesterol concentration was lower in mice fed the 18:0 diet relative to those fed the 18:1- or 18:2-enriched diets (P < 0.05) regardless of dietary cholesterol supplementation. Dietary cholesterol significantly raised hepatic total cholesterol concentration (P < 0.05) in those fed the 18:1- and 18:2-enriched diets, but not in mice fed the 18:0-enriched diet. Dietary cholesterol raised biliary cholesterol concentration (P < 0. 05) in mice fed the 18:1- and 18:2-enriched diets, but not in mice fed the 18:0-enriched diet. The cholesterol saturation index was variably affected by the fat diets. Feeding diets containing cholesterol suppressed the hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity and induced acyl coenzyme A:cholesterol acyl transferase (ACAT) activity compared with feeding diets without cholesterol (P < 0.05), indicating that the liver was exposed to dietary cholesterol. Hepatic ACAT activity was lower in mice fed the 18:0-enriched diet compared with those fed the 18:1- or 18:2-enriched diets (P < 0.05). Addition of cholesterol to the 18:1 diet induced the largest increase of hepatic ACAT activity, and this was associated with the enrichment of VLDL with cholesterol. Varying the degree of saturation of C-18 fatty acids influences the metabolism and disposition of hepatic cholesterol.  (+info)

Liquid chromatography/mass spectrometry and high-field nuclear magnetic resonance characterization of novel mixed diconjugates of the non-nucleoside human immunodeficiency virus-1 reverse transcriptase inhibitor, efavirenz. (63/2758)

Efavirenz (Sustiva) is a potent and specific inhibitor of the HIV-1 reverse transcriptase and is approved for the treatment of HIV infection. The metabolism of efavirenz in different species has been described previously. Efavirenz is primarily metabolized in rats to the glucuronide conjugate of 8-OH efavirenz. Electrospray ionization-liquid chromatography/mass spectrometry analyses of bile samples from rats dosed with either efavirenz or with 8-OH efavirenz revealed three polar metabolites, M9, M12, and M13, with pseudomolecular ions [M-H](-) at m/z 733, 602, and 749, respectively. The characteristic mass spectral fragmentation patterns obtained for metabolites M9 and M13 suggested that these were glutathione-sulfate diconjugates, and the presence of a glutathione moiety in metabolite M9 was confirmed by liquid chromatograpy/nuclear magnetic resonance (NMR) analysis of bile extracts. Metabolite M12 was characterized by liquid chromatography/mass spectrometry as a glucuronide-sulfate diconjugate. Unambiguous structures of M9, M12, and M13 were obtained from one-dimensional proton and carbon NMR as well as proton-proton (correlated spectroscopy, two-dimensional shift correlation), proton-carbon heteronuclear multiple quantum correlation, and long-range proton-carbon (heteronuclear multiple bond correlation) correlated two-dimensional NMR analyses of metabolites isolated from rat bile. The mass spectral and NMR analyses of M10, which was isolated from rat urine, suggested a cysteinylglycine-sulfate diconjugate. The isolation of these polar metabolites for further characterization by NMR was aided by mass spectral analyses of HPLC fractions and solid phase extraction extracts during the isolation steps. The complete characterization of these novel diconjugates demonstrates that further phase II metabolism of polar conjugates such as sulfates could take place in vivo.  (+info)

Stimulative effect of a casein hydrolysate on exocrine pancreatic secretion that is independent of luminal trypsin inhibitory activity in rats. (64/2758)

We have previously demonstrated that proteins could stimulate pancreatic secretion independently of luminal bile-pancreatic juice (BPJ) in a BPJ-diverted rat. To determine whether luminal protease-independent pancreatic secretion occurs in normal rats with BPJ returned to the upper small intestine, we investigated the pancreatic secretory response to intraduodenal instillation of a casein hydrolysate or the synthetic trypsin inhibitor, FOY 305, at concentrations which could almost equally inhibit hydrolysis of the synthetic substrate for trypsin with the luminal content. FOY 305 at 10 micrograms/ml and casein hydrolysate solutions at both 100 and 200 mg/ml similarly inhibited approx. 80% of the tryptic activity in the luminal contents of the proximal small intestine. Intraduodenal administration of casein hydrolysate solutions (100 and 200 mg/ml) significantly increased pancreatic secretion in a dose-dependent manner. However, intraduodenal administration of FOY 305 (10 micrograms/ml) was ineffective for stimulating pancreatic secretion. These results demonstrate that dietary protein enhances pancreatic secretion independently of the masking of luminal trypsin activity in rats.  (+info)