Loading...
(1/1538) Development of muscarinic analgesics derived from epibatidine: role of the M4 receptor subtype.

Epibatidine, a neurotoxin isolated from the skin of Epipedobates tricolor, is an efficacious antinociceptive agent with a potency 200 times that of morphine. The toxicity of epibatidine, because of its nonspecificity for both peripheral and central nicotinic receptors, precludes its development as an analgesic. During the synthesis of epibatidine analogs we developed potent antinociceptive agents, typified by CMI-936 and CMI-1145, whose antinociception, unlike that of epibatidine, is mediated via muscarinic receptors. Subsequently, we used specific muscarinic toxins and antagonists to delineate the muscarinic receptor subtype involved in the antinociception evoked by these agents. Thus, the antinociception produced by CMI-936 and CMI-1145 is inhibited substantially by 1) intrathecal injection of the specific muscarinic M4 toxin, muscarinic toxin-3; 2) intrathecally administered pertussis toxin, which inhibits the G proteins coupled to M2 and M4 receptors; and 3) s.c. injection of the M2/M4 muscarinic antagonist himbacine. These results demonstrate that the antinociception elicited by these epibatidine analogs is mediated via muscarinic M4 receptors located in the spinal cord. Compounds that specifically target the M4 receptor therefore may be of substantial value as alternative analgesics to the opiates.  (+info)

(2/1538) Apicularens A and B, new cytostatic macrolides from Chondromyces species (myxobacteria): production, physico-chemical and biological properties.

A novel macrolide, apicularen A, was produced by several species of the genus Chondromyces. Initially it was discovered by bioassay-guided RP-HPLC-fractionation of culture extracts of Chondromyces robustus, strain Cm a13. Apicularen A showed no antimicrobial activity, but was highly cytotoxic for cultivated human and animal cells, with IC50 values ranging between 0.1 and 3 ng/ml. A cometabolite of apicularen A, the N-acetylglucosamine glycoside apicularen B, was distinctly less cytotoxic with IC50 values between 0.2 and 1.2 microg/ml, and showed weak activity against a few Gram-positive bacteria. Apicularen A is chemically closely related to the salicylihalamides A and B from the marine sponge Haliclona sp.  (+info)

(3/1538) Identifying the bicyclomycin binding domain through biochemical analysis of antibiotic-resistant rho proteins.

Mutations M219K, S266A, and G337S in transcription termination factor Rho have been shown to confer resistance to the antibiotic bicyclomycin (BCM). All three His-tagged mutant Rho proteins exhibited similar Km values for ATP; however, the Vmax values at infinite ATP concentrations were one-fourth to one-third that for the His-tagged wild-type enzyme. BCM inhibition kinetics of poly(C)-dependent ATPase activity for the mutant proteins were non-competitive with respect to ATP (altering catalytic function but not ATP binding) and showed increased Ki values compared with His-tagged wild-type Rho. M219K and G337S exhibited increased ratios of poly(U)/poly(C)-stimulated ATPase activity and lower apparent Km values for ribo(C)10 in the poly(dC).ribo(C)10-dependent ATPase assay compared with His-tagged wild-type Rho. The S266A mutation did not show an increased poly(U)/poly(C) ATPase activity ratio and maintained approximately the same Km for ribo(C)10 in the poly(dC). ribo(C)10-dependent ATPase assay. The kinetic studies indicated that M219K and G337S altered the secondary RNA binding domain in Rho whereas the S266A mutation did not. Transcription termination assays for each mutant showed different patterns of Rho-terminated transcripts. Tyrosine substitution of Ser-266 led to BCM sensitivity intimating that an OH (hydroxyl) moiety at this position is needed for BCM (binding) inhibition. Our results suggest BCM binds to Rho at a site distinct from both the ATP and the primary RNA binding domains but close to the secondary RNA-binding (tracking) site and the ATP hydrolysis pocket.  (+info)

(4/1538) Latrunculin-A causes mydriasis and cycloplegia in the cynomolgus monkey.

PURPOSE: To determine the effect of latrunculin (LAT)-A, which binds to G-actin and disassembles actin filaments, on the pupil, accommodation, and isolated ciliary muscle (CM) contraction in monkeys. METHODS: Pupil diameter (vernier calipers) and refraction (coincidence refractometry) were measured every 15 minutes from 0.75 to 3.5 hours after topical LAT-A 42 microg (approximately 10 microM in the anterior chamber [AC]). Refraction was measured every 5 minutes from 0.5 to 1.5 hours after intracameral injection of 10 microl of 50 microM LAT-A (approximately 5 microM in AC), with intramuscular infusion of 1.5 mg/kg pilocarpine HCl (PILO) during the first 15 minutes of measurements. Pupil diameter was measured at 1 and 2 hours, and refraction was measured every 5 minutes from 1 to 2 hours, after intravitreal injection of 20 microl of 1.25 mM LAT-A (approximately 10 microM in vitreous), with intramuscular infusion of 1.5 mg/kg PILO during the first 15 minutes of measurements (all after topical 2.5% phenylephrine), and contractile response of isolated CM strips, obtained <1 hour postmortem and mounted in a perfusion apparatus, to 10 microM PILO +/- LAT-A was measured at various concentrations. RESULTS: Topical LAT-A of 42 microg dilated the pupil without affecting refraction. Intracameral LAT-A of 5 microM inhibited miotic and accommodative responses to intramuscular PILO. Intravitreal LAT-A of 10 microM had no effect on accommodative or miotic responses to intramuscular PILO. LAT-A dose-dependently relaxed the PILO-contracted CM by up to 50% at 3 microM in both the longitudinal and circular vectors. CONCLUSIONS: In monkeys, LAT-A causes mydriasis and cycloplegia, perhaps related to its known ability to disrupt the actin microfilament network and consequently to affect cell contractility and adhesion. Effects of LAT-A on the iris and CM may have significant physiological and clinical implications.  (+info)

(5/1538) Effect of 5-HT4 receptor stimulation on the pacemaker current I(f) in human isolated atrial myocytes.

OBJECTIVE: 5-HT4 receptors are present in human atrial cells and their stimulation has been implicated in the genesis of atrial arrhythmias including atrial fibrillation. An I(f)-like current has been recorded in human atrial myocytes, where it is modulated by beta-adrenergic stimulation. In the present study, we investigated the effect of serotonin (5-hydroxytryptamine, 5-HT) on I(f) electrophysiological properties, in order to get an insight into the possible contribution of I(f) to the arrhythmogenic action of 5-HT in human atria. METHODS: Human atrial myocytes were isolated by enzymatic digestion from samples of atrial appendage of patients undergoing coeffective cardiac surgery. Patch-clamped cells were superfused with a modified Tyrode's solution in order to amplify I(f) and reduce overlapping currents. RESULTS AND CONCLUSIONS: A time-dependent, cesium-sensitive increasing inward current, that we had previously described having the electrophysiological properties of the pacemaker current I(f), was elicited by negative steps (-60 to -130 mV) from a holding potential of -40 mV. Boltzmann fit of control activation curves gave a midpoint (V1/2) of -88.9 +/- 2.6 mV (n = 14). 5-HT (1 microM) consistently caused a positive shift of V1/2 of 11.0 +/- 2.0 mV (n = 8, p < 0.001) of the activation curve toward less negative potentials, thus increasing the amount of current activated by clamp steps near the physiological maximum diastolic potential of these cells. The effect was dose-dependent, the EC50 being 0.14 microM. Maximum current amplitude was not changed by 5-HT. 5-HT did not increase I(f) amplitude when the current was maximally activated by cAMP perfused into the cell. The selective 5-HT4 antagonists, DAU 6285 (10 microM) and GR 125487 (1 microM), completely prevented the effect of 5-HT on I(f). The shift of V1/2 caused by 1 microM 5-HT in the presence of DAU 6285 or GR 125487 was 0.3 +/- 1 mV (n = 6) and 1.0 +/- 0.6 mV (n = 5), respectively (p < 0.01 versus 5-HT alone). The effect of 5-HT4 receptor blockade was specific, since neither DAU 6285 nor GR 125487 prevented the effect of 1 microM isoprenaline on I(f). Thus, 5-HT4 stimulation increases I(f) in human atrial myocytes; this effect may contribute to the arrhythmogenic action of 5-HT in human atrium.  (+info)

(6/1538) The role of local actin instability in axon formation.

The role of localized instability of the actin network in specifying axonal fate was examined with the use of rat hippocampal neurons in culture. During normal neuronal development, actin dynamics and instability polarized to a single growth cone before axon formation. Consistently, global application of actin-depolymerizing drugs and of the Rho-signaling inactivator toxin B to nonpolarized cells produced neurons with multiple axons. Moreover, disruption of the actin network in one individual growth cone induced its neurite to become the axon. Thus, local instability of the actin network restricted to a single growth cone is a physiological signal specifying neuronal polarization.  (+info)

(7/1538) Amphidinolide B, a powerful activator of actomyosin ATPase enhances skeletal muscle contraction.

Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.  (+info)

(8/1538) Metabolism of the antimalarial endoperoxide Ro 42-1611 (arteflene) in the rat: evidence for endoperoxide bioactivation.

Ro 42-1611 (arteflene) is a synthetic endoperoxide antimalarial. The antimalarial activity of endoperoxides is attributed to iron(II)-mediated generation of carbon-centered radicals. An alpha, beta-unsaturated ketone (enone; 4-[2',4' bis(trifluoromethyl)phenyl]-3-buten-2-one), obtained from arteflene by reaction with iron(II), was identified previously as the stable product of a reaction that, by inference, also yields a cyclohexyl radical. The activation of arteflene in vivo has been characterized with particular reference to enone formation. [14C]Arteflene (35 micromol/kg) was given i.v. to anesthetized and cannulated male rats: 42.2 +/- 7.0% (mean +/- S.D., n = 7) of the radiolabel was recovered in bile over 5 h. In the majority of rats, the principal biliary metabolites were 8-hydroxyarteflene glucuronide (14.2 +/- 3. 9% dose, 0-3 h) and the cis and trans isomers of the enone (13.5 +/- 4.6% dose, 0-3 h). In conscious rats, 15.3 +/- 1.6% (mean +/- S.D., n = 8) of the radiolabel was recovered in urine over 24 h. The principal urinary metabolite appeared to be a glycine conjugate of a derivative of the enone. Biliary excretion of the glucuronide, but not of the enones, was inhibited by ketoconazole. 8-Hydroxyarteflene was formed extensively by rat and human liver microsomes but no enone was found. Bioactivation is a major pathway of arteflene's metabolism in the rat. Although the mechanism of in vivo bioactivation is unclear, the reaction is not catalyzed by microsomal cytochrome P-450 enzymes.  (+info)