Enteropathogenic E. coli attenuates secretagogue-induced net intestinal ion transport but not Cl- secretion. (9/3033)

Enteric bacterial pathogens often increase intestinal Cl- secretion. Enteropathogenic Escherichia coli (EPEC) does not stimulate active ion secretion. In fact, EPEC infection decreases net ion transport in response to classic secretagogues. This has been presumed to reflect diminished Cl- secretion. The aim of this study was to investigate the influence of EPEC infection on specific intestinal epithelial ion transport processes. T84 cell monolayers infected with EPEC were used for these studies. EPEC infection significantly decreased short-circuit current (Isc) in response to carbachol and forskolin, yet 125I efflux studies revealed no difference in Cl- channel activity. There was also no alteration in basolateral K+ channel or Na+-K+-2Cl- cotransport activity. Furthermore, net 36Cl- flux was not decreased by EPEC. No alterations in either K+ or Na+ transport could be demonstrated. Instead, removal of basolateral bicarbonate from uninfected monolayers yielded an Isc response approximating that observed with EPEC infection, whereas bicarbonate removal from EPEC-infected monolayers further diminished Isc. These studies suggest that the reduction in stimulated Isc is not secondary to diminished Cl- secretion. Alternatively, bicarbonate-dependent transport processes appear to be perturbed.  (+info)

Leucine metabolism in preterm infants receiving parenteral nutrition with medium-chain compared with long-chain triacylglycerol emulsions. (10/3033)

BACKGROUND: Although medium-chain triacylglycerols (MCTs) may be utilized more efficiently than long-chain triacylglycerols (LCTs), their effect on protein metabolism remains controversial. OBJECTIVE: The aim of the study was to compare the effects of mixed MCT-LCT and pure LCT emulsions on leucine metabolism in preterm infants. DESIGN: Fourteen preterm [gestational age: 30+/-1 wk; birth weight: 1409+/-78 g (x +/- SE)] neonates were randomly assigned to receive, from the first day of life, either a 50:50 MCT-LCT (mixed MCT group; n = 7) or an LCT (LCT group; n = 7) lipid emulsion as part of an isonitrogenous, isoenergetic total parenteral nutrition program. On the fourth day, infants received intravenous feeding providing 3 g lipid, 15 g glucose, and 3 g amino acids kg(-1) x d(-1) and underwent 1) indirect calorimetry and 2) a primed, 2-h infusion of H13CO3Na to assess the recovery of 13C in breath, immediately followed by 3) a 3-h infusion of L-[1-13C]leucine. RESULTS: The respiratory quotient tended to be slightly but not significantly higher in the mixed MCT than in the LCT group (0.96+/-0.06 compared with 0.93+/-0.03). We did not detect a significant difference between the mixed MCT and LCT groups with regard to release of leucine from protein breakdown (B; 309+/-40 compared with 257+/-46 micromol x kg(-1) x h(-1)) and nonoxidative leucine disposal (NOLD; 296+/-36 compared with 285+/-49 micromol x kg(-1) x h(-1)). In contrast, leucine oxidation was greater in the mixed MCT than in the LCT group (113+/-10 compared with 67+/-10 micromol x kg(-1) x h(-1); P = 0.007). Net leucine balance (NOLD - B) was less positive in the mixed MCT than in the LCT group (-14+/-9 compared with 28+/-10 micromol x kg(-1) x h(-1); P = 0.011). CONCLUSION: Mixed MCTs may not be as effective as LCT-containing emulsions in promoting protein accretion in parenterally fed preterm neonates.  (+info)

Nerve growth factor inhibits HCO3- absorption in renal thick ascending limb through inhibition of basolateral membrane Na+/H+ exchange. (11/3033)

Nerve growth factor (NGF) inhibits transepithelial HCO3- absorption in the rat medullary thick ascending limb (MTAL). To investigate the mechanism of this inhibition, MTALs were perfused in vitro in Na+-free solutions, and apical and basolateral membrane Na+/H+ exchange activities were determined from rates of pHi recovery after lumen or bath Na+ addition. NGF (0.7 nM in the bath) had no effect on apical Na+/H+ exchange activity, but inhibited basolateral Na+/H+ exchange activity by 50%. Inhibition of basolateral Na+/H+ exchange activity with ethylisopropyl amiloride (EIPA) secondarily reduces apical Na+/H+ exchange activity and HCO3- absorption in the MTAL (Good, D. W., George, T., and Watts, B. A., III (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 12525-12529). To determine whether a similar mechanism could explain inhibition of HCO3- absorption by NGF, apical Na+/H+ exchange activity was assessed in physiological solutions (146 mM Na+) by measurement of the initial rate of cell acidification after lumen EIPA addition. Under these conditions, in which basolateral Na+/H+ exchange activity is present, NGF inhibited apical Na+/H+ exchange activity. Inhibition of HCO3- absorption by NGF was eliminated in the presence of bath EIPA or in the absence of bath Na+. Also, NGF blocked inhibition of HCO3- absorption by bath EIPA. We conclude that NGF inhibits basolateral Na+/H+ exchange activity in the MTAL, an effect opposite from the stimulation of Na+/H+ exchange by growth factors in other systems. NGF inhibits transepithelial HCO3- absorption through inhibition of basolateral Na+/H+ exchange, most likely as the result of functional coupling in which primary inhibition of basolateral Na+/H+ exchange activity results secondarily in inhibition of apical Na+/H+ exchange activity. These findings establish a role for basolateral Na+/H+ exchange in the regulation of renal tubule HCO3- absorption.  (+info)

Anion efflux from cytotrophoblast cells derived from normal term human placenta is stimulated by hyposmotic challenge and extracellular A23187 but not by membrane-soluble cAMP. (12/3033)

The regulation of placental anion transport influences fetal accretion and placental homeostasis. We investigated whether efflux of 125I- or 36Cl- from multinucleated cytotrophoblast cells derived from human term placenta is regulated by one of three stimuli: (a) the calcium ionophore A23187, (b) a 'cocktail' of agents designed to raise intracellular levels of cAMP, (c) a hyposmotic solution. After loading with the appropriate isotope for 2 h and thorough washing, cells were exposed to sequential aliquots of buffer applied and removed each minute. Following an equilibration period of 5 min one of the stimuli was applied at room temperature At the end of the experiment the cells were lysed to give a lysate count which was used to express the count obtained from each aliquot as percentage efflux of that possible for that minute. The cAMP 'cocktail' and A23187 were applied for 5 min; the hyposmotic solution was applied for 10 min. The results for 125I- at 7 min showed that the mean efflux in the presence of hyposmotic shock was greater than control (5.7 +/- 1.0% min-1 versus 2.2 +/- 0.1% min-1, respectively; mean +/- S.E.M., n = 4 placentas). Similarly mean efflux at 6 min in the presence of A23187 was also significantly greater than control (6.5 +/- 1.9% min-1 versus 2.6 +/- 1.0% min-1, respectively, n = 3 placentas). The mean efflux in the presence of the cAMP cocktail was not different from control at any time point. The results were qualitatively the same if 36Cl- was used in the place of 125I- and when the experiment was performed with 36Cl- in a HCO3- buffer gassed with CO2. Mean 125I- efflux at 6 min in response to hyposmotic challenge was 33% less (P < 0.01) in the presence of 1 mM 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 37% less (P < 0.005) in the presence of 10 microM tamoxifen but no different if the hyposmotic solution was nominally calcium free. We conclude that there are differential effects of second messengers on anion efflux from the differentiated cytotrophoblast cells.  (+info)

Hyaline membrane disease, alkali, and intraventricular haemorrhage. (13/3033)

The relation between intraventricular haemorrhage (IVH) and hyaline membrane disease (HMD) was studied in singletons that came to necropsy at Hammersmith Hospital over the years 1966-73. The incidence of IVH in singleton live births was 3-22/1000 and of HMD 4-44/1000. Although the high figures were partily due to the large number of low birthweight infants born at this hospital, the incidence of IVH in babies weighing 1001-1500 g was three times as great as that reported in the 1658 British Perinatal Mortality Survey. Most IVH deaths were in babies with HMD, but the higher frequency of IVH was not associated with any prolongation of survival time of babies who died with HMD as compared with the 1958 survey. IVH was seen frequently at gestations of up to 36 weeks in babies with HMD but was rare above 30 weeks' gestation in babies without HMD. This indicated that factors associated with HMD must cause most cases of IVH seen at gestations above 30 weeks. Comparison of clinical details in infants with HMD who died with or without IVH (at gestations of 30-37 weeks) showed no significant differences between the groups other than a high incidence of fits and greater use of alkali therapy in the babies with IVH. During the 12 hours when most alkali therapy was given, babies dying with IVD received a mean total alkali dosage of 10-21 mmol/kg and those dying without IVH 6-34 mmol/kg (P less than 0-001). There was no difference in severity of hypoxia or of metabolic acidosis between the 2 groups. Babies who died with HMD and germinal layer haemorrhage (GLH) without IVH had received significantly more alkali than those who died with HMD alone, whereas survivors of severe respiratory distress syndrome had received lower alkali doses than other groups. It is suggested that the greatly increased death rate from IVH in babies with HMD indicates some alteration of management of HMD (since 1958) as a causative factor. Liberal use of hypertonic alkali solutions is the common factor which distinguishes babies dying with GLH and IVH from other groups of babies with HMD. Although the causal nature of this association remains unproved, it seems justifiable to lrge caution in alkali usage.  (+info)

Antigenicity of purified glutaraldehyde-treated cholera toxoid administered orally. (14/3033)

The antigenicity of orally administered glutaraldehyde-treated cholera toxoid was investigated in healthy volunteers. Fourteen volunteers ingested two or three 2-mg doses of toxoid with saline, with the doses spaced at 28-day intervals. Thirteen other volunteers received comparable toxoid doses with NaHCO3 and milk to neutralize gastric acid. Increments in circulating antitoxin levels were used to assay the antigenicity of oral toxoid. Antitoxin was measured by adrenal cell, rabbit skin permeability factor, and passive hemagglutination assays in sera collected on days 0, 28, 35, 56, 63, and 84 after primary immunization. Adrenal cell and rabbit skin assays exhibited identical sensitivity in detecting antitoxin rises in the 27 vaccinees (19/27) and were significantly more sensitive than passive hemagglutination (11/27) (P less than 0.03). Volunteers who ingested toxoid with NaHCO3 and milk had a higher rate of seroconversion (77%) than those who received toxoid with saline (64%); they also had earlier rises in antitoxin titer and consistently higher geometric mean titers on all days tested. These studies demonstrate that purified cholera toxoid is antigenic in humans after oral administration. The possible role of oral toxoid in enhancing the protective effect of killed whole-cell vaccines can now be investigated.  (+info)

Efficiency of oxidative phosphorylation and energy dissipation by H+ ion recycling in rat-liver mitochondrial metabolizing pyruvate. (15/3033)

A method was developed for the calculation of metabolic fluxes through individual enzymatic reactions of pyruvate metabolism including the citric acid cycle in rat liver mitochondrial incubated at metabolic states between state 4 and state 3. This method is based on the measurement of the specific radioactivities of the products formed from [2-14C]pyruvate. With this procedure the energy balance of mitochondria incubated in the presence of [2-14C]pyruvate, ATP, bicarbonate and phosphate at different ATP/ADP ratios in the medium was calculated. The ATP/ADP ratios were maintained at a steady state with creatine kinase plus creatine as a phosphoryl acceptor. The calculations revealed that by adding increasing concentrations of creatine up to 20 mM the energy dissipated by the mitochondria decreased but showed a local maximum at 13mM creatine. Omission of bicarbonate from the medium led to a shift of this maximum. When energy dissipation was minimal the overall P/O ratio was maximal. The amount of energy dissipated was paralleled by the magnitude of the pH gradient across the inner membrane. From these results it was concluded that the recycling of H+ ions which consists of a passive leakage of H+ ions into the matrix and an active extrusion of these ions out of this compartment, is an important energy dissipating process. The H+ ion recycling is thus one of the processes which give rise to the state 4 respiration in mitochondria.  (+info)

Intracellular pH regulation by HCO3-/Cl- exchange is activated during early mouse zygote development. (16/3033)

We report here that at least one major pHi-regulatory mechanism, the HCO3-/Cl- exchanger, is quiescent in unfertilized mouse eggs but becomes fully activated during early development following fertilization. Zygotes (8-12 h postfertilization) exhibited a marked intracellular alkalinization upon external Cl- removal, which is indicative of active HCO3-/Cl- exchangers, in contrast to the very small response observed in eggs. In addition, efflux of Cl- from eggs upon external Cl- removal was much slower than that from zygotes, indicating additional pathways for Cl- to cross the plasma membrane in zygotes. Furthermore, while zygotes quickly recovered from an induced alkalosis, eggs exhibited only a slow, incomplete recovery. Following in vitro fertilization (IVF), increased HCO3-/Cl- exchanger activity was first detectable about 4 h postfertilization and reached the maximal level after about 8 h. The upregulation of HCO3-/Cl- exchanger activity after fertilization appeared to occur by activation of existing, inactive exchangers rather than by synthesis or transport of new exchangers, as the increase in activity following IVF was unaffected by inhibition of protein synthesis or by disruption of the Golgi apparatus or the cytoskeleton. This activation may depend on the Ca2+ transients which follow fertilization, as suppression of these transients, using the Ca2+ chelator BAPTA, reduced subsequent upregulation of HCO3-/Cl- exchanger activity by about 50%. Activation of pHi-regulatory systems may be a widespread feature of the earliest period of embryonic development, not restricted to species such as marine invertebrates as previously believed.  (+info)