A kinetic study of ribulose bisphosphate carboxylase from the photosynthetic bacterium Rhodospirillum rubrum. (1/3033)

The activation kinetics of purified Rhodospirillum rubrum ribulose bisphosphate carboxylase were analysed. The equilibrium constant for activation by CO(2) was 600 micron and that for activation by Mg2+ was 90 micron, and the second-order activation constant for the reaction of CO(2) with inactive enzyme (k+1) was 0.25 X 10(-3)min-1 . micron-1. The latter value was considerably lower than the k+1 for higher-plant enzyme (7 X 10(-3)-10 X 10(-3)min-1 . micron-1). 6-Phosphogluconate had little effect on the active enzyme, and increased the extent of activation of inactive enzyme. Ribulose bisphosphate also increased the extent of activation and did not inhibit the rate of activation. This effect might have been mediated through a reaction product, 2-phosphoglycolic acid, which also stimulated the extent of activation of the enzyme. The active enzyme had a Km (CO2) of 300 micron-CO2, a Km (ribulose bisphosphate) of 11--18 micron-ribulose bisphosphate and a Vmax. of up to 3 mumol/min per mg of protein. These data are discussed in relation to the proposed model for activation and catalysis of ribulose bisphosphate carboxylase.  (+info)

NaCl-induced renal vasoconstriction in salt-sensitive African Americans: antipressor and hemodynamic effects of potassium bicarbonate. (2/3033)

In 16 African Americans (blacks, 14 men, 2 women) with average admission mean arterial pressure (MAP, mm Hg) 99.9+/-3.5 (mean+/-SEM), we investigated whether NaCl-induced renal vasoconstriction attends salt sensitivity and, if so, whether supplemental KHCO3 ameliorates both conditions. Throughout a 3-week period under controlled metabolic conditions, all subjects ate diets containing 15 mmol NaCl and 30 mmol potassium (K+) (per 70 kg body wt [BW] per day). Throughout weeks 2 and 3, NaCl was loaded to 250 mmol/d; throughout week 3, dietary K+ was supplemented to 170 mmol/d (KHCO3). On the last day of each study week, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) using renal clearances of PAH and inulin. Ten subjects were salt sensitive (SS) (DeltaMAP >+5%) and 6 salt resistant (SR). In NaCl-loaded SS but not SR subjects, RBF (mL/min/1.73 m2) decreased from 920+/-75 to 828+/-46 (P<0.05); filtration fraction (FF, %) increased from 19. 4+/- to 21.4 (P<0.001); and renal vascular resistance (RVR) (10(3)xmm Hg/[mL/min]) increased from 101+/-8 to 131+/-10 (P<0.001). In all subjects combined, DeltaMAP varied inversely with DeltaRBF (r =-0.57, P=0.02) and directly with DeltaRVR (r = 0.65, P=0.006) and DeltaFF (r = 0.59, P=0.03), but not with MAP before NaCl loading. When supplemental KHCO3 abolished the pressor effect of NaCl in SS subjects, RBF was unaffected but GFR and FF decreased. The results show that in marginally K+-deficient blacks (1) NaCl-induced renal vasoconstrictive dysfunction attends salt sensitivity; (2) the dysfunction varies in extent directly with the NaCl-induced increase in blood pressure (BP); and (3) is complexly affected by supplemented KHCO3, GFR and FF decreasing but RBF not changing. In blacks, NaCl-induced renal vasoconstriction may be a pathogenetic event in salt sensitivity.  (+info)

Indirect evidence for cholinergic inhibition of intestinal bicarbonate absorption in humans. (3/3033)

BACKGROUND: The aim of the study was to test the hypothesis that in the fasting state, proximal intestinal HCO3- absorption, which depends on villus Na+/H+ exchanger activity, is tonically inhibited by a cholinergic atropine sensitive mechanism. SUBJECTS: The experiments were performed in 34 healthy volunteers and in eight patients with intestinal villus atrophy. METHODS: HCO3- absorption was measured with a modified triple lumen perfusion technique in the distal duodenum, the most proximal portion of the small intestine. The study was designed to compensate for the inhibitory effects of atropine on intestinal motor activity. RESULTS: Atropine had three effects on HCO3- transport: it reduced HCO3- concentration at the proximal aspiration site, it displaced the relation between HCO3- concentration and HCO3- absorption to the left, and it induced a significant acidification of the perfusate at the distal aspiration site. The magnitude of the stimulatory effect on HCO3- absorption was similar to the difference between patients with intestinal villus atrophy and healthy controls. CONCLUSION: The data suggest that, in the fasting state, duodenal HCO3- absorption, which depends on villus Na+/H+ exchanger activity, may be tonically inhibited by an atropine sensitive cholinergic mechanism.  (+info)

Role of a novel photosystem II-associated carbonic anhydrase in photosynthetic carbon assimilation in Chlamydomonas reinhardtii. (4/3033)

Intracellular carbonic anhydrases (CA) in aquatic photosynthetic organisms are involved in the CO2-concentrating mechanism (CCM), which helps to overcome CO2 limitation in the environment. In the green alga Chlamydomonas reinhardtii, this CCM is initiated and maintained by the pH gradient created across the chloroplast thylakoid membranes by photosystem (PS) II-mediated electron transport. We show here that photosynthesis is stimulated by a novel, intracellular alpha-CA bound to the chloroplast thylakoids. It is associated with PSII on the lumenal side of the thylakoid membranes. We demonstrate that PSII in association with this lumenal CA operates to provide an ample flux of CO2 for carboxylation.  (+info)

Topology of the membrane domain of human erythrocyte anion exchange protein, AE1. (5/3033)

Anion exchanger 1 (AE1) is the chloride/bicarbonate exchange protein of the erythrocyte membrane. By using a combination of introduced cysteine mutants and sulfhydryl-specific chemistry, we have mapped the topology of the human AE1 membrane domain. Twenty-seven single cysteines were introduced throughout the Leu708-Val911 region of human AE1, and these mutants were expressed by transient transfection of human embryonic kidney cells. On the basis of cysteine accessibility to membrane-permeant biotin maleimide and to membrane-impermeant lucifer yellow iodoacetamide, we have proposed a model for the topology of AE1 membrane domain. In this model, AE1 is composed of 13 typical transmembrane segments, and the Asp807-His834 region is membrane-embedded but does not have the usual alpha-helical conformation. To identify amino acids that are important for anion transport, we analyzed the anion exchange activity for all introduced cysteine mutants, using a whole cell fluorescence assay. We found that mutants G714C, S725C, and S731C have very low transport activity, implying that this region has a structurally and/or catalytically important role. We measured the residual anion transport activity after mutant treatment with the membrane-impermeant, cysteine-directed compound, sodium (2-sulfonatoethyl)methanethiosulfonate) (MTSES). Only two mutants, S852C and A858C, were inhibited by MTSES, indicating that these residues may be located in a pore-lining region.  (+info)

Modulation of chloride, potassium and bicarbonate transport by muscarinic receptors in a human adenocarcinoma cell line. (6/3033)

1. Short-circuit current (I(SC)) responses to carbachol (CCh) were investigated in Colony 1 epithelia, a subpopulation of the HCA-7 adenocarcinoma cell line. In Krebs-Henseleit (KH) buffer, CCh responses consisted of three I(SC) components: an unusual rapid decrease (the 10 s spike) followed by an upward spike at 30 s and a slower transient increase (the 2 min peak). This response was not potentiated by forskolin; rather, CCh inhibited cyclic AMP-stimulated I(SC). 2. In HCO3- free buffer, the decrease in forskolin-elevated I(SC) after CCh was reduced, although the interactions between CCh and forskolin remained at best additive rather than synergistic. When Cl- anions were replaced by gluconate, both Ca2+- and cyclic AMP-mediated electrogenic responses were significantly inhibited. 3. Basolateral Ba2+ (1-10 mM) and 293B (10 microM) selectively inhibited forskolin stimulation of I(SC), without altering the effects of CCh. Under Ba2+- or 293B-treated conditions, CCh responses were potentiated by pretreatment with forskolin. 4. Basolateral charybdotoxin (50 nM) significantly increased the size of the 10 s spike of CCh responses in both KH and HCO3- free medium, without affecting the 2 min peak. The enhanced 10 s spike was inhibited by prior addition of 5 mM apical Ba2+. Charybdotoxin did not affect forskolin responses. 5. In epithelial layers prestimulated with forskolin, the muscarinic antagonists atropine and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, both at 100 nM) abolished subsequent 10 microM CCh responses. Following addition of p-fluoro hexahydro-sila-difenidol (pF-HHSiD, 10 microM) or pirenzepine (1 microM), qualitative changes in the CCh response time-profile also indicated a rightward shift of the agonist concentration-response curve; however, 1 microM gallamine had no effect. These results suggest that a single M3-like receptor subtype mediates the secretory response to CCh. 6. It is concluded that CCh and forskolin activate discrete populations of basolateral K+ channels gated by either Ca2+ or cyclic AMP, but that the Cl- permeability of the apical membrane may limit their combined effects on electrogenic Cl- secretion. In addition, CCh activates a Ba2+-sensitive apical K+ conductance leading to electrogenic K+ transport. Both agents may also modulate HCO3- secretion through a mechanism at least partially dependent on carbonic anhydrase.  (+info)

Formal analysis of electrogenic sodium, potassium, chloride and bicarbonate transport in mouse colon epithelium. (7/3033)

1. The mammalian colonic epithelium carries out a number of different transporting activities simultaneously, of which more than one is increased following activation with a single agonist. These separate activities can be quantified by solving a set of equations describing these activities, provided some of the dependent variables can be eliminated. Using variations in the experimental conditions, blocking drugs and comparing wild type tissues with those from transgenic animals this has been achieved for electrogenic ion transporting activity of the mouse colon. 2. Basal activity and that following activation with forskolin was measured by short circuit current in isolated mouse colonic epithelia from normal and cystic fibrosis (CF) mice. 3. Using amiloride it is shown that CF colons show increased electrogenic sodium absorption compared to wild type tissues. CF mice had elevated plasma aldosterone, which may be responsible for part or all of the increased sodium absorbtion in CF colons. 4. The derived values for electrogenic chloride secretion and for electrogenic potassium secretion were increased by 13 and 3 fold respectively by forskolin, compared to basal state values for these processes. 5. The loop diuretic, frusemide, completely inhibited electrogenic potassium secretion, but apparently only partially inhibited electrogenic chloride secretion. However, use of bicarbonate-free solutions and acetazolamide reduced the frusemide-resistant current, suggesting that electrogenic bicarbonate secretion accounts for the frusemide-resistant current. 6. It is argued that the use of tissues from transgenic animals is an important adjunct to pharmacological analysis, especially where effects in tissues result in the activation of more than one sort of response.  (+info)

A novel role for carbonic anhydrase: cytoplasmic pH gradient dissipation in mouse small intestinal enterocytes. (8/3033)

1. The spatial and temporal distribution of intracellular H+ ions in response to activation of a proton-coupled dipeptide transporter localized at the apical pole of mouse small intestinal isolated enterocytes was investigated using intracellular carboxy-SNARF-1 fluorescence in combination with whole-cell microspectrofluorimetry or confocal microscopy. 2. In Hepes-buffered Tyrode solution, application of the dipeptide Phe-Ala (10 mM) to a single enterocyte reduced pHi locally in the apical submembranous space. After a short delay (8 s), a fall of pHi occurred more slowly at the basal pole. 3. In the presence of CO2/HCO3--buffered Tyrode solution, the apical and basal rates of acidification were not significantly different and the time delay was reduced to 1 s or less. 4. Following application of the carbonic anhydrase inhibitor acetazolamide (100 microM) in the presence of CO2/HCO3- buffer, addition of Phe-Ala once again produced a localized apical acidification that took 5 s to reach the basal pole. Basal acidification was slower than at the apical pole. 5. We conclude that acid influx due to proton-coupled dipeptide transport can lead to intracellular pH gradients and that intracellular carbonic anhydrase activity, by facilitating cytoplasmic H+ mobility, limits their magnitude and duration.  (+info)