Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. (57/724)

Bax is a member of the Bcl-2 family of proteins known to regulate mitochondria-dependent programmed cell death. Early in apoptosis, Bax translocates from the cytosol to the mitochondrial membrane. We have identified by confocal and electron microscopy a novel step in the Bax proapoptotic mechanism immediately subsequent to mitochondrial translocation. Bax leaves the mitochondrial membranes and coalesces into large clusters containing thousands of Bax molecules that remain adjacent to mitochondria. Bak, a close homologue of Bax, colocalizes in these apoptotic clusters in contrast to other family members, Bid and Bad, which circumscribe the outer mitochondrial membrane throughout cell death progression. We found the formation of Bax and Bak apoptotic clusters to be caspase independent and inhibited completely and specifically by Bcl-X(L), correlating cluster formation with cytotoxic activity. Our results reveal the importance of a novel structure formed by certain Bcl-2 family members during the process of cell death.  (+info)

Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. (58/724)

Reperfusion after myocardial ischemia is associated with a rapid influx of calcium, leading to activation of various enzymes including calpain. Isolated perfused adult rabbit hearts subjected to global ischemia and reperfusion were studied. Calpain or a calpain-like activity was activated within 15 min after reperfusion, and preconditioning suppressed calpain activation. In contrast, caspase activation was not detected although cytochrome c was released after ischemia and reperfusion. The pro-apoptotic BH3-only Bcl-2 family member, Bid, was cleaved during ischemia/reperfusion in the adult rabbit heart. Recombinant Bid was cleaved by calpain to a fragment that was able to mediate cytochrome c release. The calpain cleavage site was mapped to a region within Bid that is extremely susceptible to proteolysis. These findings suggest that there is cross-talk between apoptotic and necrotic pathways in myocardial ischemia/reperfusion injury.  (+info)

The recruitment of Fas-associated death domain/caspase-8 in Ras-induced apoptosis. (59/724)

Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.  (+info)

TRAIL (APO-2L) induces apoptosis in human prostate cancer cells that is inhibitable by Bcl-2. (60/724)

To determine if TRAIL-induced apoptosis in human prostate tumor cells was suppressed by bcl-2, we compared the levels of apoptosis induced by recombinant human TRAIL in pairs of isogenic cell lines that do or do not express bcl-2. Three human prostate tumor cell lines (PC3, DU145 and LNCaP) and their bcl-2-expressing counterparts were tested for their susceptibility to TRAIL. Cells were exposed to TRAIL in the presence of cycloheximide which acted as a sensitizer. Apoptosis was induced rapidly in PC3 and DU145 neo-control transfected cells, whereas induction in LNCaP required 24 h. All three cell line variants expressing bcl-2 were resistant to the apoptotic effects of TRAIL. Caspase 3 and 8 activation was also detected in the neo control cells after treatment with TRAIL, demonstrating the rapid activation of the caspase cascade similar to that seen with other death receptors. Bcl-2 overexpression in these cells blocked activation of these caspases, suggesting that bcl-2 expression of human cancer cells may be a critical factor in the therapeutic efficacy of TRAIL.  (+info)

A role for mitochondrial Bak in apoptotic response to anticancer drugs. (61/724)

In the present study a clonal Jurkat cell line deficient in expression of Bak was used to analyze the role of Bak in cytochrome c release from mitochondria. The Bak-deficient T leukemic cells were resistant to apoptosis induced by UV, staurosporin, VP-16, bleomycin, or cisplatin. In contrast to wild type Jurkat cells, these Bak-deficient cells did not respond to UV or treatment with these anticancer drugs by membranous phosphatidylserine exposure, DNA breaks, activation of caspases, or release of mitochondrial cytochrome c. The block in the apoptotic cascade was in the mitochondrial mechanism for cytochrome c release because purified mitochondria from Bak-deficient cells failed to release cytochrome c or apoptosis-inducing factor in response to recombinant Bax or truncated Bid. The resistance of Bak-deficient cells to VP-16 was reversed by transduction of the Bak gene into these cells. Also, the cytochrome c releasing capability of the Bak-deficient mitochondria was restored by insertion of recombinant Bak protein into purified mitochondria. Following mitochondrial localization, low dose recombinant Bak restored the mitochondrial release of cytochrome c in response to Bax; at increased doses it induced cytochrome c release itself. The function of Bak is independent of Bid and Bax because recombinant Bak induced cytochrome c release from mitochondria purified from Bax(-/-), Bid(-/-), or Bid(-/-) Bax(-/-) mice. Together, our findings suggest that Bak plays a key role in the apoptotic machinery of cytochrome c release and thus in the chemoresistance of human T leukemic cells.  (+info)

BH3 death domain peptide induces cell type-selective mitochondrial outer membrane permeability. (62/724)

The BH3 domain is essential for the release of cytochrome c from mitochondria by pro-apoptotic Bcl-2 family proteins during apoptosis. This study tested the hypothesis that a Bax peptide that includes the BH3 domain can permeabilize the mitochondrial outer membrane and release cytochrome c in the absence of a permeability transition at the mitochondrial inner membrane. BH3 peptide (0.1-60 microm) released cytochrome c from mitochondria in the presence of physiological concentrations of ions in a cell type-selective manner, whereas a BH3 peptide with a single amino acid substitution was ineffective. The release of cytochrome c by BH3 peptide correlated with the presence of endogenous Bax at the mitochondria and its integral membrane insertion. Cytochrome c release was accompanied by adenylate kinase release, was not associated with mitochondrial swelling or substantial loss of electrical potential across the inner membrane, and was unaffected by inhibitors of the permeability transition pore. Cytochrome c release was, however, inhibited by Bcl-2. Although energy-coupled respiration was inhibited after the release of cytochrome c, mitochondria maintained membrane potential in the presence of ATP due to the reversal of the ATP synthase. Overall, results support the hypothesis that BH3 peptide releases cytochrome c by a Bax-dependent process that is independent of the mitochondrial permeability transition pore but regulated by Bcl-2.  (+info)

Identification of p21 as a target of cycloheximide-mediated facilitation of CD95-mediated apoptosis in human malignant glioma cells. (63/724)

Human glioma cell lines differ in their requirement for the inhibition of protein synthesis to activate the CD95-dependent killing pathway. CD95 ligand (CD95L) induced mitochondrial cytochrome c release and processing of caspases 3, 7, 8 and 9 in LN-18 cells in the absence of an inhibitor of protein synthesis, cycloheximide (CHX). These biochemical changes were observed in LN-229 cells only in the presence of CHX. The viral caspase inhibitor, cytokine response modifier (crm)-A, inhibited mitochondrial cytochrome c release, caspase processing and cell death under all conditions. Ectopic expression of BCL-X(L) prevented processing of caspase 8 in LN-18 cells but not in LN-229 cells. Thus, caspase 8 activation is amplified through the release of cytochrome c in LN-18 cells but occurs mainly at the receptor in LN-229 cells. In contrast to BCL-2, BCL-X(L), X-linked inhibitor-of-apoptosis protein (XIAP) and FLICE-inhibitory protein (FLIP), the levels of the cyclin-dependent kinase (CDK) inhibitor, p21Waf/Cip1, rapidly decreased in response to CHX. P21 antisense oligonucleotides promoted caspase activation and mitochondrial cytochrome c release and induced strong sensitization to CD95-mediated apoptosis. These data place potentiating effects of CHX (i) to the activation of caspase 8 at the receptor in LN-229 cells as well as (ii) to a down-stream target at least in LN-18 cells, but probably both cell lines, that may be identical with p21Waf/Cip1.  (+info)

Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. (64/724)

In L929sAhFas cells, tumor necrosis factor (TNF) leads to necrotic cell death, whereas agonistic anti-Fas antibodies elicit apoptotic cell death. Apoptosis, but not necrosis, is correlated with a rapid externalization of phosphatidylserine and the appearance of a hypoploid population. During necrosis no cytosolic and organelle-associated active caspase-3 and -7 fragments are detectable. The necrotic process does not involve proteolytic generation of truncated Bid; moreover, no mitochondrial release of cytochrome c is observed. Bcl-2 overexpression slows down the onset of necrotic cell death. In the case of apoptosis, active caspases are released to the culture supernatant, coinciding with the release of lactate dehydrogenase. Following necrosis, mainly unprocessed forms of caspases are released. Both TNF-induced necrosis and necrosis induced by anti-Fas in the presence of the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone are prevented by the serine protease inhibitor N-tosyl-L-phenylalanine chloromethylketone and the oxygen radical scavenger butylated hydroxyanisole, while Fas-induced apoptosis is not affected.  (+info)