Conformation-dependent inactivation of human betaine-homocysteine S-methyltransferase by hydrogen peroxide in vitro. (17/91)

Betaine-homocysteine S-methyltransferase (BHMT) transfers a methyl group from betaine to Hcy to form DMG (dimethylglycine) and Met. The reaction is ordered Bi Bi; Hcy is the first substrate to bind and Met is the last product off. Using intrinsic tryptophan fluorescence [Castro, Gratson, Evans, Jiracek, Collinsova, Ludwig and Garrow (2004) Biochemistry 43, 5341-5351], it was shown that BHMT exists in three steady-state conformations: enzyme alone, enzyme plus occupancy at the first substrate-binding site (Hcy or Met), or enzyme plus occupancy at both substrate-binding sites (Hcy plus betaine, or Hcy plus DMG). Betaine or DMG alone do not bind to the enzyme, indicating that the conformational change associated with Hcy binding creates the betaine-binding site. CBHcy [S-(d-carboxybutyl)-D,L-homocysteine] is a bisubstrate analogue that causes BHMT to adopt the same conformation as the ternary complexes. We report that BHMT is susceptible to conformation-dependent oxidative inactivation. Two oxidants, MMTS (methyl methanethiosulphonate) and hydrogen peroxide (H2O2), cause a loss of the enzyme's catalytic Zn (Zn2+ ion) and a correlative loss of activity. Addition of 2-mercaptoethanol and exogenous Zn after MMTS treatment restores activity, but oxidation due to H2O2 is irreversible. CD and glutaraldehyde cross-linking indicate that H2O2 treatment causes small perturbations in secondary structure but no change in quaternary structure. Oxidation is attenuated when both binding sites are occupied by CBHcy, but Met alone has no effect. Partial digestion of ligand-free BHMT with trypsin produces two large peptides, excising a seven-residue peptide within loop L2. CBHcy but not Met binding slows down proteolysis by trypsin. These findings suggest that L2 is involved in the conformational change associated with occupancy at the betaine-binding site and that this conformational change and/or occupancy at both ligand-binding sites protect the enzyme from oxidative inactivation.  (+info)

Effects of diabetes and insulin on betaine-homocysteine S-methyltransferase expression in rat liver. (18/91)

Elevation of plasma homocysteine levels has been recognized as an independent risk factor for the development of cardiovascular disease, a major complication of diabetes. Plasma homocysteine reflects a balance between its synthesis via S-adenosyl-L-methionine-dependent methylation reactions and its removal through the transmethylation and the transsulfuration pathways. Betaine-homocysteine methyltransferase (BHMT, EC 2.1.1.5) is one of the enzymes involved in the remethylation pathway. BHMT, a major zinc metalloenzyme in the liver, catalyzes the transfer of methyl groups from betaine to homocysteine to form dimethylglycine and methionine. We have previously shown that plasma homocysteine levels and the transsulfuration pathway are affected by diabetes. In the present study, we found increased BHMT activity and mRNA levels in livers from streptozotocin-diabetic rats. In the rat hepatoma cell line (H4IIE cells), glucocorticoids (triamcinolone) increased the level and rate of BHMT mRNA synthesis. In the same cell line, insulin decreased the abundance of BHMT mRNA and the rate of de novo mRNA transcription of the gene. Thus the decreased plasma homocysteine in various models of diabetes could be due to enhanced homocysteine removal brought about by a combination of increased transsulfuration of homocysteine to cysteine and increased remethylation of homocysteine to methionine by BHMT.  (+info)

Hepatic very-low-density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine-homocysteine S-methyltransferase. (19/91)

We have previously reported a positive correlation between the expression of BHMT (betaine-homocysteine S-methyltransferase) and ApoB (apolipoprotein B) in rat hepatoma McA (McArdle RH-7777) cells [Sowden, Collins, Smith, Garrow, Sparks and Sparks (1999) Biochem. J. 341, 639-645]. To examine whether a similar relationship occurs in vivo, hepatic BHMT expression was induced by feeding rats a Met (L-methionine)-restricted betaine-containing diet, and parameters of ApoB metabolism were evaluated. There were no generalized metabolic abnormalities associated with Met restriction for 7 days, as evidenced by control levels of serum glucose, ketones, alanine aminotransferase and L-homocysteine levels. Betaine plus the Met restriction resulted in lower serum insulin and non-esterified fatty acid levels. Betaine plus Met restriction induced hepatic BHMT 4-fold and ApoB mRNA 3-fold compared with Met restriction alone. No changes in percentage of edited ApoB mRNA were observed on the test diets. An increase in liver ApoB mRNA correlated with an 82% and 46% increase in ApoB and triacylglycerol production respectively using in vivo Triton WR 1339. Increased secretion of VLDL (very-low-density lipoprotein) with Met restriction plus betaine was associated with a 45% reduction in liver triacylglycerol compared with control. Nuclear run-off assays established that transcription of both bhmt and apob genes was also increased in Met-restricted plus betaine diets. No change in ApoB mRNA stability was detected in BHMT-transfected McA cells. Hepatic ApoB and BHMT mRNA levels were also increased by 1.8- and 3-fold respectively by betaine supplementation of Met-replete diets. Since dietary betaine increased ApoB mRNA, VLDL ApoB and triacylglycerol production and decreased hepatic triacylglycerol, results suggest that induction of apob transcription may provide a potential mechanism for mobilizing hepatic triacylglycerol by increasing ApoB available for VLDL assembly and secretion.  (+info)

Inhibition of betaine-homocysteine S-methyltransferase causes hyperhomocysteinemia in mice. (20/91)

Inhibitors and methyl donor substrates for betaine-homocysteine S-methyltransferase (BHMT) were used to study the role of this enzyme in the regulation of plasma total homocysteine (tHcy). Mice were administered an i.p. injection of S-(delta-carboxybutyl)-dl-homocysteine (CBHcy; 1 mg), a specific and potent inhibitor of BHMT, and tHcy and hepatic BHMT protein and activity levels were monitored over a 24-h period. Compared with saline-injected control mice, at 2 h postinjection, the CBHcy-treated mice had 87% lower BHMT activity and a 2.7-fold increase (11.1 vs. 3.0 micromol/L) in tHcy, effects that lasted nearly 8 h but returned to normal by 24 h. The level of BHMT protein remained constant over the 24-h period. After 6 CBHcy (1 mg) injections (one every 12 h), the mice had 7-fold higher tHcy, a 65% reduction in the liver S-adenosylmethionine:S-adenosylhomocysteine ratio, and a marked upregulation of BHMT protein expression. At 2 h after injection of the sulfoxide derivative of CBHcy (10 mg) into mice, there was a modest reduction in BHMT activity and a 90% increase in tHcy. When given an injection of Met (3 mg) or Met plus CBHcy (1 mg), post-Met load tHcy levels were 2.2-fold higher (128 vs. 40 micromol/L) at 2 h postinjection in the mice given CBHcy. Like betaine, dimethylsulfoniopropionate was an effective tHcy-lowering agent when given with a Met load. These studies are the first to show that transient inhibition of BHMT in vivo causes transient hyperhomocysteinemia, and that dimethylsulfoniopropionate can reduce a post-Met load rise in tHcy.  (+info)

Inborn errors of sulfur-containing amino acid metabolism. (21/91)

Two superimposed metabolic sequences, transsulfuration and the methionine/homocysteine cycle, form the pathway for methionine metabolism in mammalian liver. This combined pathway was formulated first to explain observations in subjects with homocystinuria caused by cystathionine synthase deficiency. Since that time additional inborn errors have been discovered, and currently we know of human subjects with isolated defects in all of the reactions of the combined pathway with only one exception: betaine homocysteine methyltransferase. Studies of these inborn errors have contributed significantly to our knowledge of human methionine metabolism and to the clinical consequences of impaired metabolism. Transsulfuration appears to function primarily for the metabolism of excess methionine, and each of the 5 defects in this pathway results in the accumulation of 1 or more of the normal metabolites. Thus, studies of these disorders may provide insight into both the potential pathological sequelae of nutritional methionine excess as well as whether laboratory testing allows the detection of excess.  (+info)

S-alkylated homocysteine derivatives: new inhibitors of human betaine-homocysteine S-methyltransferase. (22/91)

A series of S-alkylated derivatives of homocysteine were synthesized and characterized as inhibitors of human recombinant betaine-homocysteine S-methyltransferase (BHMT). Some of these compounds inhibit BHMT with IC50 values in the nanomolar range. BHMT is very sensitive to the structure of substituents on the sulfur atom of homocysteine. The S-carboxybutyl and S-carboxypentyl derivatives make the most potent inhibitors, and an additional sulfur atom in the alkyl chain is well tolerated. The respective (R,S)-5-(3-amino-3-carboxy-propylsulfanyl)-pentanoic, (R,S)-6-(3-amino-3-carboxy-propylsulfanyl)-hexanoic, and (R,S)-2-amino-4-(2-carboxymethylsulfanyl-ethylsulfanyl)-butyric acids are very potent inhibitors and are the strongest ever reported. We determined that (R,S)-5-(3-amino-3-carboxy-propylsulfanyl)-pentanoic acid displays competitive inhibition with respect to betaine binding with a Kappi of 12 nM. Some of these compounds are currently being tested in mice to study the influence of BHMT on the metabolism of sulfur amino acids in vivo.  (+info)

Folate status modulates the induction of hepatic glycine N-methyltransferase and homocysteine metabolism in diabetic rats. (23/91)

A diabetic state induces the activity and abundance of glycine N-methyltransferase (GNMT), a key protein in the regulation of folate, methyl group, and homocysteine metabolism. Because the folate-dependent one-carbon pool is a source of methyl groups and 5-methyltetrahydrofolate allosterically inhibits GNMT, the aim of this study was to determine whether folate status has an impact on the interaction between diabetes and methyl group metabolism. Rats were fed a diet containing deficient (0 ppm), adequate (2 ppm), or supplemental (8 ppm) folate for 30 days, after which diabetes was initiated in one-half of the rats by streptozotocin treatment. The activities of GNMT, phosphatidylethanolamine N-methyltransferase (PEMT), and betaine-homocysteine S-methyltransferase (BHMT) were increased about twofold in diabetic rat liver; folate deficiency resulted in the greatest elevation in GNMT activity. The abundance of GNMT protein and mRNA, as well as BHMT mRNA, was also elevated in diabetic rats. The marked hyperhomocysteinemia in folate-deficient rats was attenuated by streptozotocin, likely due in part to increased BHMT expression. These results indicate that a diabetic state profoundly modulates methyl group, choline, and homocysteine metabolism, and folate status may play a role in the extent of these alterations. Moreover, the upregulation of BHMT and PEMT may indicate an increased choline requirement in the diabetic rat.  (+info)

Liver choline dehydrogenase and kidney betaine-homocysteine methyltransferase expression are not affected by methionine or choline intake in growing rats. (24/91)

Choline dehydrogenase (CHDH) and betaine-homocysteine methyltransferase (BHMT) are 2 enzymes involved in choline oxidation. BHMT is expressed at high levels in rat liver and its expression is regulated by dietary Met and choline. BHMT is also found in rat kidney, albeit in substantially lower amounts, but it is not known whether kidney BHMT expression is regulated by dietary Met or choline. Similarly, CHDH activity is highest in the liver and kidney, but the regulation of its expression by diet has not been thoroughly investigated. Sprague Dawley rats ( approximately 50 g) were fed, for 9 d in 2 x 3 factorial design (n = 8), an l-amino acid-defined diet varying in l-Met (0.125, 0.3, or 0.8%) and choline (0 or 25 mmol/kg diet). Liver and kidney BHMT and CHDH were assessed using enzymatic, Western blot, and real-time PCR analyses. Liver samples were also fixed for histological analysis. Liver BHMT activity was 1.3-fold higher in rats fed the Met deficient diet containing choline, which was reflected in corresponding increases in mRNA content and immunodetectable protein. Independent of dietary choline, supplemental Met increased hepatic BHMT activity approximately 30%. Kidney BHMT and liver CHDH expression were refractory to these diets. Some degree of fatty liver developed in all rats fed a choline-devoid diet, indicating that supplemental Met cannot completely compensate for the lack of dietary choline in growing rats.  (+info)