Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. (9/67)

BACKGROUND: The presynaptic protein alpha-synuclein is involved in a range of neurodegenerative diseases. Here we analyze potential compensatory mechanisms in alpha-synuclein null mutant mice. Furthermore, the findings reveal problems that may be associated with inbred mouse strains. RESULTS: Expression profiling by cDNA array technology in a transgenic mouse model revealed striking differences only in the expression level of alpha-synuclein. This was caused by a chromosomal deletion of the alpha-synuclein locus in the C57BL/6J inbred strain used for backcrossing. However, the deletion is only present in a subpopulation of C57BL/6J mice, namely animals from Harlan. No other genes are known to be affected by the deletion, which is estimated to be smaller than 2 cM. We propose to name this strain C57BL/6S. C57BL/6S animals appear phenotypically normal. They show no upregulation of beta-synuclein or gamma-synuclein, excluding a compensatory mechanism. Also, the expression of synphilin-1 was unaffected. CONCLUSIONS: The C57BL/6S strain should help in the understanding of the physiological function of alpha-synuclein and its involvement in synucleinopathies. Also, the findings exemplify unexpected complications that may arise during the study of transgenic models or inbred strains, in particular when combined with genome wide screening techniques.  (+info)

beta-Synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. (10/67)

We characterized beta-synuclein, the non-amyloidogenic homolog of alpha-synuclein, as an inhibitor of aggregation of alpha-synuclein, a molecule implicated in Parkinson's disease. For this, doubly transgenic mice expressing human (h) alpha- and beta-synuclein were generated. In doubly transgenic mice, beta-synuclein ameliorated motor deficits, neurodegenerative alterations, and neuronal alpha-synuclein accumulation seen in halpha-synuclein transgenic mice. Similarly, cell lines transfected with beta-synuclein were resistant to alpha-synuclein accumulation. halpha-synuclein was coimmunoprecipitated with hbeta-synuclein in the brains of doubly transgenic mice and in the double-transfected cell lines. Our results raise the possibility that beta-synuclein might be a natural negative regulator of alpha-synuclein aggregation and that a similar class of endogenous factors might regulate the aggregation state of other molecules involved in neurodegeneration. Such an anti-amyloidogenic property of beta-synuclein might also provide a novel strategy for the treatment of neurodegenerative disorders.  (+info)

alpha-Synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. (11/67)

The expression of alpha-synuclein, a synaptic molecule implicated in the pathogenesis of neurodegenerative disorders such as Parkinson's disease and Lewy body disease is increased upon injury to the nervous system, indicating that it might play a role in regeneration and plasticity; however, the mechanisms are unclear. Because c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, plays an important role in stress response, the main objective of the present study was to better understand the involvement of this pathway in the signaling responses associated with resistance to injury in cells expressing alpha-synuclein. For this purpose, the JNK-signaling pathway was investigated in alpha-synuclein-transfected neuronal cell line glucose transporter (GT) 1-7 under oxidative stress conditions. Although hydrogen peroxide challenge resulted in JNK activation and cell death in cells transfected with vector control or beta-synuclein, alpha-synuclein-transfected cells were resistant to hydrogen peroxide, and JNK was not activated. The inactivation of JNK in the alpha-synuclein-transfected cells was associated with increased expression and activity of JNK-interacting protein (JIP)-1b/islet-brain (IB)1, the scaffold protein for the JNK pathway. Similarly, cells transfected with JIP-1b/IB1 were resistant to hydrogen peroxide associated with inactivation of the JNK pathway. In these cells, expression of endogenous alpha-synuclein was significantly increased at the protein level. Furthermore, alpha-synuclein was co-localized with JIP-1b/IB1 in the growth cones. Taken together, these results suggest that increased alpha-synuclein expression might protect cells from oxidative stress by inactivation of JNK via increased expression of JIP-1b/IB1. Furthermore, interactions between alpha-synuclein and JIP-1b/IB1 may play a mutual role in the neuronal response to injury and neurodegeneration.  (+info)

The synucleins. (12/67)

SUMMARY: Synucleins are small, soluble proteins expressed primarily in neural tissue and in certain tumors. The family includes three known proteins: alpha-synuclein, beta-synuclein, and gamma-synuclein. All synucleins have in common a highly conserved alpha-helical lipid-binding motif with similarity to the class-A2 lipid-binding domains of the exchangeable apolipoproteins. Synuclein family members are not found outside vertebrates, although they have some conserved structural similarity with plant 'late-embryo-abundant' proteins. The alpha- and beta-synuclein proteins are found primarily in brain tissue, where they are seen mainly in presynaptic terminals. The gamma-synuclein protein is found primarily in the peripheral nervous system and retina, but its expression in breast tumors is a marker for tumor progression. Normal cellular functions have not been determined for any of the synuclein proteins, although some data suggest a role in the regulation of membrane stability and/or turnover. Mutations in alpha-synuclein are associated with rare familial cases of early-onset Parkinson's disease, and the protein accumulates abnormally in Parkinson's disease, Alzheimer's disease, and several other neurodegenerative illnesses. The current challenge is to understand the normal cellular function of these proteins and how they might contribute to the development of human disease.  (+info)

Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. (13/67)

The pathological hallmark of Parkinson's disease is the presence of intracellular inclusions, Lewy bodies, and Lewy neurites, in the dopaminergic neurons of the substantia nigra and several other brain regions. Filamentous alpha-synuclein is the major component of these deposits and its aggregation is believed to play an important role in Parkinson's disease and several other neurodegenerative diseases. Two homologous proteins, beta- and gamma-synucleins, are also abundant in the brain. The synucleins are natively unfolded proteins. beta-Synuclein, which lacks 11 central hydrophobic residues compared with its homologs, exhibited the properties of a random coil, whereas alpha- and gamma-synucleins were slightly more compact and structured. gamma-Synuclein, unlike its homologs, formed a soluble oligomer at relatively low concentrations, which appears to be an off-fibrillation pathway species. Here we show that, although they have similar biophysical properties to alpha-synuclein, beta- And gamma-synucleins inhibit alpha-synuclein fibril formation. Complete inhibition of alpha-synuclein fibrillation was observed at 4:1 molar excess of beta- and gamma-synucleins. No significant incorporation of beta-synuclein into the fibrils was detected. The lack of fibrils formed by beta-synuclein is most readily explained by the absence of a stretch of hydrophobic residues from the middle region of the protein. A model for the inhibition is proposed.  (+info)

Evidence that alpha-synuclein functions as a negative regulator of Ca(++)-dependent alpha-granule release from human platelets. (14/67)

alpha-Synuclein has been implicated in the pathogenesis of Parkinson disease (PD) and related neurodegenerative disorders. More recently, it has been suggested to be an important regulatory component of vesicle transport in neuronal cells. alpha-Synuclein is also highly expressed in platelets and is loosely associated with the membrane of the secretory alpha-granules. However, the functional significance of these observations is unknown. In this study, the possible function of alpha-synuclein in vesicle transport, with particular regard to alpha-granule release from the platelets, was investigated. The results showed that ionomycin- or thrombin-induced alpha-granule secretion was inhibited by exogenous alpha-synuclein addition in a dose-dependent manner. However, [(3)H]5-HT release from the dense granules and hexosaminidase release from the lysosomal granules were not affected. Two point mutants (A30P and A53T) found in some familial types of PD, in addition to beta-synuclein and alpha-synuclein112, effectively inhibited PF4 release from the alpha-granules. However, the deletion mutants, which completely lacked either the N-terminal region or the C-terminal tail, did not affect alpha-granule release. Interestingly, exogenously added alpha-synuclein appeared to enter the platelets but did not change the Ca(++) level in the platelets at the resting state and the increase in the Ca(++) level on stimulation. Electron microscopy also supported that alpha-synuclein inhibits alpha-granule release. These results suggest that alpha-synuclein may function as a specific negative regulator of alpha-granule release in platelets.  (+info)

Autoimmune encephalomyelitis and uveitis induced by T cell immunity to self beta-synuclein. (15/67)

Beta-synuclein is a neuronal protein that accumulates in the plaques that characterize neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. It has been proposed that immunization to peptides of plaque-forming proteins might be used therapeutically to help dissociate pathogenic plaques in the brain. We now report that immunization of Lewis rats with a peptide from beta-synuclein resulted in acute paralytic encephalomyelitis and uveitis. T cell lines and clones reactive to the peptide adoptively transferred the disease to naive rats. Immunoblotting revealed the presence of beta-synuclein in heavy myelin, indicating that the expression of beta-synuclein is not confined to neurons. These results add beta-synuclein to the roster of encephalitogenic self Ags, point out the potential danger of therapeutic autoimmunization to beta-synuclein, and alert us to the unsuspected possibility that autoimmunity to beta-synuclein might play an inflammatory role in the pathogenesis of neurodegeneration.  (+info)

Cocaine abusers have an overexpression of alpha-synuclein in dopamine neurons. (16/67)

Alpha-synuclein is a presynaptic protein that has been implicated as a possible causative agent in the pathogenesis of Parkinson's disease. The native protein is a major component of nigral Lewy bodies in Parkinson's disease, and full-length alpha-synuclein accumulates in Lewy neurites. Here we present evidence that alpha-synuclein levels are elevated in midbrain dopamine (DA) neurons of chronic cocaine abusers. Western blot and immunoautoradiographic studies were conducted on postmortem neuropathological specimens from cocaine users and age-matched drug-free control subjects. The results demonstrated that alpha-synuclein levels in the DA cell groups of the substantia nigra/ventral tegmental complex were elevated threefold in chronic cocaine users compared with normal age-matched subjects. The increased protein levels in chronic cocaine users were accompanied by changes in the expression of alpha-synuclein mRNA in the substantia nigra and ventral tegmental area. Although alpha-synuclein expression is prominent in the hippocampus, there was no increase in protein expression in this brain region. The levels of beta-synuclein, a possible negative regulator of alpha-synuclein, also were not affected by cocaine exposure. Alpha-synuclein protein levels were increased in the ventral tegmental area, but not the substantia nigra, in victims of excited cocaine delirium who experienced paranoia, marked agitation, and hyperthermia before death. The overexpression of alpha-synuclein may occur as a protective response to changes in DA turnover and increased oxidative stress resulting from cocaine abuse. However, the accumulation of alpha-synuclein protein with long-term cocaine abuse may put addicts at increased risk for developing the motor abnormalities of Parkinson's disease.  (+info)