Oscillatory beta activity predicts response speed during a multisensory audiovisual reaction time task: a high-density electrical mapping study. (17/161)

Bisensory redundant targets are processed faster than the respective unisensory target stimuli alone as evidenced by substantially faster reaction times (RTs). This multisensory RT facilitation has been interpreted as an expression of integrative processing between the different sensory modalities. However, the neuronal mechanisms underlying the RT facilitation effect are not well understood. Oscillatory responses in the beta frequency range (13-30 Hz) have been related to sensory-motor processing. Here, we investigated whether modulation of beta responses might also underlie the faster RTs seen for multisensory stimuli. Using high-density electrical mapping, we explored the association between early (50-170 ms) multisensory processing in the evoked beta response and RTs recorded during a simple RT task. Subjects were instructed to indicate the appearance of any stimulus in a stream of auditory-alone (A), visual-alone (V), and multisensory (AV) stimuli by a button press. Beta responses were analyzed using Morlet wavelet transformations. Multisensory interactions were found over frontal, occipital, central, and sensory-motor regions. Critically, beta activity correlated with mean RTs over all stimulus types. Significant negative correlations were found for frontal, occipital, and sensory-motor scalp regions. We conclude that the association between oscillatory beta activity and integrative multisensory processing is directly linked to multisensory RT facilitation effects.  (+info)

Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease. (18/161)

The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms.  (+info)

Small-world networks and functional connectivity in Alzheimer's disease. (19/161)

We investigated whether functional brain networks are abnormally organized in Alzheimer's disease (AD). To this end, graph theoretical analysis was applied to matrices of functional connectivity of beta band-filtered electroencephalography (EEG) channels, in 15 Alzheimer patients and 13 control subjects. Correlations between all pairwise combinations of EEG channels were determined with the synchronization likelihood. The resulting synchronization matrices were converted to graphs by applying a threshold, and cluster coefficients and path lengths were computed as a function of threshold or as a function of degree K. For a wide range of thresholds, the characteristic path length L was significantly longer in the Alzheimer patients, whereas the cluster coefficient C showed no significant changes. This pattern was still present when L and C were computed as a function of K. A longer path length with a relatively preserved cluster coefficient suggests a loss of complexity and a less optimal organization. The present study provides further support for the presence of "small-world" features in functional brain networks and demonstrates that AD is characterized by a loss of small-world network characteristics. Graph theoretical analysis may be a useful approach to study the complexity of patterns of interrelations between EEG channels.  (+info)

Epileptogenic neocortical networks are revealed by abnormal temporal dynamics in seizure-free subdural EEG. (20/161)

Long-term video electroencephalographic (EEG) recording is currently a routine procedure in the presurgical evaluation of localization-related epilepsies. Cortical epileptogenic zone is usually localized from ictal recordings with intracranial electrodes, causing a significant burden to patients and health care. Growing literature suggests that epileptogenic networks exhibit aberrant dynamics also during seizure-free periods. We examined if neocortical epileptogenic regions can be circumscribed by quantifying local long-range temporal (auto-)correlations (LRTC) with detrended fluctuation analysis of seizure-free ongoing subdural EEG activity in 4 frequency bands in 5 patients. We show here with subdural EEG recordings that the LRTC are abnormally strong near the seizure onset area. This effect was most salient in neocortical oscillations in the beta frequency band (14-30 Hz). Moreover, lorazepam, a widely used antiepileptic drug, exerted contrasting effects on LRTC (n = 2): lorazepam attenuated beta-band LRTC near the epileptic focus, whereas it strengthened LRTC in other cortical areas. Our findings demonstrate that interictal neuronal network activity near the focus of seizure onset has pathologically strong intrinsic temporal correlations. The observed effect by lorazepam on beta-band activity suggests that the antiepileptic mechanism of benzodiazepines may be related to the normalization of LRTC within the epileptic focus. We propose that this method may become a promising candidate for routine invasive and noninvasive presurgical localization of epileptic foci.  (+info)

Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease. (21/161)

Recent studies suggest that beta (15-30 Hz) oscillatory activity in the subthalamic nucleus (STN) is dramatically increased in Parkinson's disease (PD) and may interfere with movement execution. Dopaminergic medications decrease beta activity and deep brain stimulation (DBS) in the STN may alleviate PD symptoms by disrupting this oscillatory activity. Depth recordings from PD patients have demonstrated beta oscillatory neuronal and local field potential (LFP) activity in STN, although its prevalence and relationship to neuronal activity are unclear. In this study, we recorded both LFP and neuronal spike activity from the STN in 14 PD patients during functional neurosurgery. Of 200 single- and multiunit recordings 56 showed significant oscillatory activity at about 26 Hz and 89% of these were coherent with the simultaneously recorded LFP. The incidence of neuronal beta oscillatory activity was significantly higher in the dorsal STN (P = 0.01) and corresponds to the significantly increased LFP beta power recorded in the same region. Of particular interest was a significant positive correlation between the incidence of oscillatory neurons and the patient's benefit from dopaminergic medications, but not with baseline motor deficits off medication. These findings suggest that the degree of neuronal beta oscillatory activity is related to the magnitude of the response of the basal ganglia to dopaminergic agents rather than directly to the motor symptoms of PD. The study also suggests that LFP beta oscillatory activity is generated largely within the dorsal portion of the STN and can produce synchronous oscillatory activity of the local neuronal population.  (+info)

Gamma and beta neural activity evoked during a sensory gating paradigm: effects of auditory, somatosensory and cross-modal stimulation. (22/161)

OBJECTIVE: Stimulus-driven salience is determined involuntarily, and by the physical properties of a stimulus. It has recently been theorized that neural coding of this variable involves oscillatory activity within cortical neuron populations at beta frequencies. This was tested here through experimental manipulation of inter-stimulus interval (ISI). METHODS: Non-invasive neurophysiological measures of event-related gamma (30-50 Hz) and beta (12-20 Hz) activity were estimated from scalp-recorded evoked potentials. Stimuli were presented in a standard "paired-stimulus" sensory gating paradigm, where the S1 (conditioning) stimulus was conceptualized as long-ISI, or "high salience", and the S2 (test) stimulus as short-ISI, or "low salience". Three separate studies were conducted: auditory stimuli only (N = 20 participants), somatosensory stimuli only (N = 20), and a cross-modal study for which auditory and somatosensory stimuli were mixed (N = 40). RESULTS: Early (20-150 ms) stimulus-evoked beta activity was more sensitive to ISI than temporally-overlapping gamma-band activity, and this effect was seen in both auditory and somatosensory studies. In the cross-modal study, beta activity was significantly modulated by the similarity (or dissimilarity) of stimuli separated by a short ISI (0.5 s); a significant cross-modal gating effect was nevertheless detected. CONCLUSIONS: With regard to the early sensory-evoked response recorded from the scalp, the interval between identical stimuli especially modulates beta oscillatory activity. SIGNIFICANCE: This is consistent with developing theories regarding the different roles of temporally-overlapping oscillatory activity within cortical neuron populations at gamma and beta frequencies, particularly the claim that the latter is related to stimulus-driven salience.  (+info)

A beta2-frequency (20-30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. (23/161)

Beta2 frequency (20-30 Hz) oscillations appear over somatosensory and motor cortices in vivo during motor preparation and can be coherent with muscle electrical activity. We describe a beta2 frequency oscillation occurring in vitro in networks of layer V pyramidal cells, the cells of origin of the corticospinal tract. This beta2 oscillation depends on gap junctional coupling, but it survives a cut through layer 4 and, hence, does not depend on apical dendritic electrogenesis. It also survives a blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors or a blockade of GABA(A) receptors that is sufficient to suppress gamma (30-70 Hz) oscillations in superficial cortical layers. The oscillation period is determined by the M type of K+ current.  (+info)

Beta rhythms (15-20 Hz) generated by nonreciprocal communication in hippocampus. (24/161)

Generation of gamma rhythms in reciprocally connected areas of cortex produces synchronous neuronal firing, although little is known about the consequences of gamma rhythms when generated in nonreciprocally connected regions. This nonreciprocity exists in hippocampus, where gamma rhythms are generated in area CA3 in vitro and in vivo and nonreciprocally projected to area CA1 by the Schaffer collateral pathway. Here we demonstrate how this CA3 gamma rhythm generates two different patterns of local CA1 oscillation dependent on the degree of output from area CA1. 1) In conditions where activity projected to area CA1 produces only very low principal cell recruitment the local population rhythm mimics the gamma rhythm projected from CA3. This activity is generated predominantly by recruitment of CA1 basket cells in a manner dependent on phasic, feedforward excitation of this interneuron subclass. Interneurons in stratum oriens, not receiving CA3 feedforward input, fired at theta frequencies. 2) In the presence of serotonin CA1 principal cell recruitment was appreciably enhanced, resulting in dual activation of CA1 basket cells through both feedforward and feedback excitations. Feedback excitation to CA1 stratum oriens interneurons was also enhanced. The resulting change in interneuron network dynamics generated a beta-frequency CA1 rhythm (as a near-subharmonic of the gamma rhythm projected from CA3). These findings demonstrate that in nonreciprocally connected networks, the frequency of population rhythms in target areas serves to code for degree of principal cell recruitment by afferent input.  (+info)