Induction of detoxifying enzymes in rodent white adipose tissue by aryl hydrocarbon receptor agonists and antioxidants. (57/216)

The liver is the main organ of drug metabolism, but the expression and induction by xenobiotics of drug-metabolizing enzymes is also often observed in extrahepatic tissues. Recently, we reported that lipophilic cytochrome P450 inducers, beta-naphthoflavone (BNF), phenobarbital, and dexamethasone, induced CYP1, CYP2B, and CYP3A enzymes, respectively, in rat epididymal white adipose tissue (WAT) at both mRNA and protein levels. To further confirm the xenobiotic-induced expression of drug-metabolizing enzymes in adipose tissue, we studied the induction of CYP1A1 and other detoxifying enzymes by aryl hydrocarbon receptor (AhR) agonists and antioxidants. BNF increased CYP1A1 mRNA levels in several visceral WATs (epididymal, perirenal, and mesenteric) to a greater degree than in subcutaneous WAT in rats. Using C57BL/6 and DBA/2 mice with different responsiveness to aryl hydrocarbons and detecting cytoplasmic levels of AhR proteins, we have demonstrated that AhR mediates this CYP1A1 induction by BNF in WAT. Moreover, the NF-E2-related factor 2 (Nrf2)/antioxidant responsive element pathway is also functional in WAT, since BNF, which is known to activate both AhR and Nrf2, and antioxidants including tert-butylhydroquinone, 1-chloro-2,4-dinitrobenzene, and menadione induced the expression of Nrf2-target genes (NAD-(P)H:quinone oxidoreductase, glutathione S-transferase A subunits, and heme oxygenase-1) in rats and mice. These results suggest that both AhR and Nrf2 pathways are active in WAT and that lipophilic compounds accumulated in WAT can activate these transcription factors to increase detoxification capability in the tissue.  (+info)

The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. (58/216)

Planar halogenated aromatic hydrocarbons (pHAHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin), show strong binding affinity for the aryl hydrocarbon receptor (AHR) and are potent inducers of cytochrome P4501A (CYP1A). It is widely accepted that dioxin toxicity is largely AHR mediated; however, the role of CYP1A activity in causing that toxicity is less clear. Another class of AHR agonists of increasing concern because of their known toxicity and ubiquity in the environment is the polycyclic aromatic hydrocarbons (PAHs). Like dioxin, some PAHs also cause toxicity to early life stages of vertebrates. Symptoms include increased cardiovascular dysfunction, pericardial and yolk sac edemas, subcutaneous hemorrhages, craniofacial deformities, reduced growth, and increased mortality rates. Although developmental effects are comparable between these two types of AHR agonists, the roles of both the AHR and CYP1A activity in PAH toxicity are unknown. As observed in previous studies with killifish (Fundulus heteroclitus), we demonstrate here that coexposure of zebrafish (Danio rerio) embryos to the PAH-type AHR agonist beta-naphthoflavone (BNF) and the CYP1A inhibitor alpha-naphthoflavone (ANF) significantly enhanced toxicity above that observed for single-compound exposures. In order to elucidate the role of the AHR pathway in mediating synergistic toxicity of PAH mixtures to early life stages, we used a morpholino approach to knock down expression of zebrafish AHR2 and CYP1A proteins during development. We observed that while knock down of AHR2 reduces cardiac toxicity of BNF combined with ANF to zebrafish embryos, CYP1A knockdown markedly enhanced toxicity of BNF alone and BNF + ANF coexposures. These data support earlier chemical inducer/inhibitor studies and also suggest that mechanisms underlying developmental toxicity of PAH-type AHR agonists are different from those of pHAHs. Identifying the pathways involved in PAH toxicity will provide for more robust, mechanistic-based tools for risk assessment of single compounds and complex environmental mixtures.  (+info)

Beta-naphthoflavone represses dystrophin Dp71 expression in hepatic cells. (59/216)

Dystrophin Dp71 is expressed in hepatic tissue; however, its function in this tissue remains unknown. The Dp71 promoter sequence contains conserved CACGC motifs, which constitute the invariant core sequence of xenobiotic-regulatory elements. These elements function as target sites for the aryl hydrocarbon receptor/aryl hydrocarbon nuclear translocator (Ahr/ARNT) in genes regulated by this transcription factor. Thus, Dp71 expression in hepatic cells would be regulated by Ahr signaling. In this study, the effect of the xenobiotics beta-Naphthoflavone (betaNF), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and Benzo[a]Pyrene (BaP) on Dp71 expression was analyzed in Hepa-1 cells. It was demonstrated that betaNF, but not BaP or TCDD, represses Dp71 expression at both transcriptional and translational levels. To test directly the involvement of the Ahr signaling in the negative regulation of Dp71, we analyzed the effect of betaNF on Dp71 expression in the liver of wild type (Ahr+/+) and AHR-null (Ahr-/-) mice. The Dp71 mRNA repression, caused by the betaNF treatment, was also found in the liver tissue of wild type mice; however, such negative effect was reversed in the liver of AHR-null mice, which supports the participation of the Ahr signaling in Dp71 downregulation. Modulation of Dp71 expression by betaNF may represent a novel mechanism of Ahr action.  (+info)

Regulation of aryl hydrocarbon receptor expression in rat granulosa cells. (60/216)

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates most of the toxic and endocrine-disruptive actions of aromatic compounds in the ovary. Paradoxically, this receptor has been shown to play important roles in normal female reproductive function as well. Although knowledge of AHR expression regulation in the ovary is of crucial significance to understand the receptor biology and its function in reproductive physiology, there are only limited data in this area. The purpose of the present study was to establish the possible regulation that AHR might undergo in ovarian cells. Here we show that the hormones FSH and estradiol are able to reduce AHR protein and transcript levels in granulosa cells in a way that parallels the changes observed in ovarian tissue across the rat estrous cycle. These findings suggest that estradiol and FSH would be cycle-associated endogenous modulators of AHR expression. In addition, we show that in granulosa cells the receptor is rapidly downregulated via proteasomal degradation following treatment with AHR ligands. However, prolonged treatment with an agonist caused an increase in Ahr mRNA levels. These actions would constitute a regulatory mechanism that both attenuates AHR signal rapidly and replenishes the cellular receptor pool in the long term. In conclusion, our results indicate that AHR expression is regulated by classical hormones and by its own ligands in granulosa cells.  (+info)

Regulation of the CYP1A1 gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin but not by beta-naphthoflavone or 3-methylcholanthrene is altered in hepatitis C virus replicon-expressing cells. (61/216)

Exposure to hepatitis C virus (HCV) can lead to the development of cirrhosis and hepatocellular carcinoma. To examine the effects of long-term HCV infection on hepatic cytochrome P450 1A1 (CYP1A1) expression and function, we used a human hepatoma cell line expressing the HCV subgenomic replicon (Huh.8) to evaluate CYP1A1 induction by the aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In this study, we demonstrate that the induction of CYP1A1 expression in Huh.8 cells by TCDD but not by beta-naphthoflavone or 3-methylcholanthrene was significantly diminished. TCDD exposure of Huh.8 cells resulted in greater than 55% suppression of CYP1A1 transcription compared with the parent cell line Huh7, whereas protein levels and enzyme activities were further diminished. Suppression of CYP1A1 mRNA expression in TCDD-treated Huh.8 cells was partially reversed after pretreatment with the antioxidants N-acetylcysteine and nordihydroguaiaretic acid, suggesting a role for oxidative stress. Induced CYP1A1 message, protein, and enzyme activity were partially restored in an Huh7 cell line expressing the HCV replicon containing a deletion in the nonstructural protein NS5A. Furthermore, adenoviral expression of NS5A in Huh7 partially suppressed TCDD-induced CYP1A1 protein and enzyme activity, implicating this protein in the mechanism of suppression. These findings demonstrate that TCDD-mediated AhR signaling is impaired in hepatocytes in which HCV is present and that NS5A alone or in the presence of other nonstructural proteins of the subgenomic replicon is in part responsible.  (+info)

Apoptosis and Bax expression are increased by coal dust in the polycyclic aromatic hydrocarbon-exposed lung. (62/216)

BACKGROUND: Miners inhaling respirable coal dust (CD) frequently develop coal workers' pneumoconiosis, a dust-associated pneumoconiosis characterized by lung inflammation and variable fibrosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptosis was reported to play a critical role in the development of another pneumoconiosis of miners, silicosis. In addition, CD was reported to suppress cytochrome P450 1A1 (CYP1A1) induction by PAHs. METHODS: We investigated the hypothesis that apoptosis plays a critical role in lung injury and down-regulation of CYP1A1 induction in mixed exposures to CD and PAHs. We exposed rats intratracheally to 0.0, 2.5, 10.0, 20.0, or 40.0 mg/rat CD and, 11 days later, to intraperitoneal beta-naphthoflavone (BNF) , a PAH. In another group of rats exposed to CD and BNF, caspase activity was inhibited by injection of the pan-caspase inhibitor Q-VD-OPH [quinoline-Val-Asp (OMe) -CH2-OPH]. RESULTS: In rats exposed to BNF, CD exposure increased alveolar expression of the proapoptotic mediator Bax but decreased CYP1A1 induction relative to BNF exposure alone. Pan-caspase inhibition decreased CD-associated Bax expression and apoptosis but did not restore CYP1A1 activity. Further, CD-induced lung inflammation and alveolar epithelial cell hypertrophy and hyperplasia were not suppressed by caspase inhibition. CONCLUSIONS: Combined BNF and CD exposure increased Bax expression and apoptosis in the lung, but Bax and apoptosis were not the major determinants of early lung injury in this model.  (+info)

Human CYP1A1GFP expression in transgenic mice serves as a biomarker for environmental toxicant exposure. (63/216)

The human CYP1A1 gene is regulated by the aryl hydrocarbon receptor (AhR), and induction of CYP1A1 is known to play an important role in xenobiotic metabolism. To examine the regulation of human CYP1A1 in vivo, we created a transgenic mouse strain (Tg-CYP1A1(GFP)) expressing a chimeric gene consisting of the entire human CYP1A1 gene (15 kb) fused with a GFP reporter gene. The treatment of Tg-CYP1A1(GFP) mice with a single intraperitoneal dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or benzo[a]pyrene (B[a]P) led to the induction of CYP1A1(GFP) in both the liver and the lung as determined by fluorescence and Western blot analysis. The localization of induced fluorescence in liver also demonstrated the usefulness of cultured hepatocytes in examining the actions of AhR agonists toward induction of CYP1A1(GFP). Other routes of B[a]P administration, such as by oral exposure at 100 mg/kg for 3 days, led to reduced induction of CYP1A1(GFP) in liver and lung. In liver, expression of CYP1A1(GFP) was a sensitive marker for oral exposure, while mouse CYP1A1 was not induced at these doses. While first pass metabolism of B[a]P in the gastrointestinal tract reduces the potential of the AhR to induce CYP1A1(GFP) in the liver, adequate concentrations reach the hepatic circulation as demonstrated by induction of human UGT1A proteins in transgenic mice that express the human UGT1 locus. The capability to identify fluorescently labeled CYP1A1 in vivo provides a sensitive measurement of gene response and links exposure to potential environmental toxicants and activation of the AhR.  (+info)

Evaluation of human CYP1A2 and CYP3A4 mRNA expression in hepatocytes from chimeric mice with humanized liver. (64/216)

We investigated and compared the expression of human CYPs mRNA in primary cultures of cryopreserved human hepatocytes and in chimeric mice constructed by transplanting hepatocytes from the same human donors. Analysis was performed by real-time reverse-transcription polymerase chain reaction. Initial expression levels for the 12 human CYPs mRNA in chimeric mouse hepatocytes were higher than those in human hepatocytes, but a low correlation coefficient was observed (r=0.690). After 24 h of culture, the correlation remained low (r=0.699). The medium was replaced with fresh medium without human epidermal growth factor, and after 48 h of culture, expression of the 12 human CYPs mRNA were very similar in human hepatocytes and chimeric mouse hepatocytes, and a higher correlation coefficient was observed (r=0.809). After 72 h of culture, the correlation remained high (r=0.873). The ratio of human CYP1A2 mRNA to beta-actin mRNA in chimeric mouse hepatocytes decreased quickly during the first 24 h of culture, and then remained constant. Expression profiles of human CYP1A2 mRNA in chimeric mouse hepatocytes were similar to those in human hepatocytes after exposure of beta-naphthoflavone. CYP3A4 mRNA expression was increased significantly by rifampicin (Rif) exposure in human hepatocytes, whereas Rif-induced increases in CYP3A4 mRNA expression in chimeric mouse hepatocytes was seen for two of the three donors. In conclusion, we demonstrated that expression and induction of human CYPs in human hepatocytes can be reproduced in chimeric mouse hepatocytes.  (+info)