Characterization of the structure and composition of gecko adhesive setae. (1/17)

The ability of certain reptiles to adhere to vertical (and hang from horizontal) surfaces has been attributed to the presence of specialized adhesive setae on their feet. Structural and compositional studies of such adhesive setae will contribute significantly towards the design of biomimetic fibrillar adhesive materials. The results of electron microscopy analyses of the structure of such setae are presented, indicating their formation from aggregates of proteinaceous fibrils held together by a matrix and potentially surrounded by a limiting proteinaceous sheath. Microbeam X-ray diffraction analysis has shown conclusively that the only ordered protein constituent in these structures exhibits a diffraction pattern characteristic of beta-keratin. Raman microscopy of individual setae, however, clearly shows the presence of additional protein constituents, some of which may be identified as alpha-keratins. Electrophoretic analysis of solubilized setal proteins supports these conclusions, indicating the presence of a group of low-molecular-weight beta-keratins (14-20 kDa), together with alpha-keratins, and this interpretation is supported by immunological analyses.  (+info)

Effective elastic modulus of isolated gecko setal arrays. (2/17)

Conventional pressure sensitive adhesives (PSAs) are fabricated from soft viscoelastic materials that satisfy Dahlquist's criterion for tack with a Young's modulus (E) of 100 kPa or less at room temperature and 1 Hz. In contrast, the adhesive on the toes of geckos is made of beta-keratin, a stiff material with E at least four orders of magnitude greater than the upper limit of Dahlquist's criterion. Therefore, one would not expect a beta-keratin structure to function as a PSA by deforming readily to make intimate molecular contact with a variety of surface profiles. However, since the gecko adhesive is a microstructure in the form of an array of millions of high aspect ratio shafts (setae), the effective elastic modulus (E(eff)) is much lower than E of bulk beta-keratin. In the first test of the E(eff) of a gecko setal adhesive, we measured the forces resulting from deformation of isolated arrays of tokay gecko (Gekko gecko) setae during vertical compression, and during tangential compression at angles of +45 degrees and -45 degrees . We tested the hypothesis that E(eff) of gecko setae falls within Dahlquist's criterion for tack, and evaluated the validity of a model of setae as cantilever beams. Highly linear forces of deformation under all compression conditions support the cantilever model. E(eff) of setal arrays during vertical and +45 degrees compression (along the natural path of drag of the setae) were 83+/-4.0 kPa and 86+/-4.4 kPa (means +/- s.e.m.), respectively. Consistent with the predictions of the cantilever model, setae became significantly stiffer when compressed against the natural path of drag: E(eff) during -45 degrees compression was 110+/-4.7 kPa. Unlike synthetic PSAs, setal arrays act as Hookean elastic solids; setal arrays function as a bed of springs with a directional stiffness, assisting alignment of the adhesive spatular tips with the contact surface during shear loading.  (+info)

Frictional adhesion: A new angle on gecko attachment. (3/17)

Directional arrays of branched microscopic setae constitute a dry adhesive on the toes of pad-bearing geckos, nature's supreme climbers. Geckos are easily and rapidly able to detach their toes as they climb. There are two known mechanisms of detachment: (1) on the microscale, the seta detaches when the shaft reaches a critical angle with the substrate, and (2) on the macroscale, geckos hyperextend their toes, apparently peeling like tape. This raises the question of how geckos prevent detachment while inverted on the ceiling, where body weight should cause toes to peel and setal angles to increase. Geckos use opposing feet and toes while inverted, possibly to maintain shear forces that prevent detachment of setae or peeling of toes. If detachment occurs by macroscale peeling of toes, the peel angle should monotonically decrease with applied force. In contrast, if adhesive force is limited by microscale detachment of setae at a critical angle, the toe detachment angle should be independent of applied force. We tested the hypothesis that adhesion is increased by shear force in isolated setal arrays and live gecko toes. We also tested the corollary hypotheses that (1) adhesion in toes and arrays is limited as on the microscale by a critical angle, or (2) on the macroscale by adhesive strength as predicted for adhesive tapes. We found that adhesion depended directly on shear force, and was independent of detachment angle. Therefore we reject the hypothesis that gecko toes peel like tape. The linear relation between adhesion and shear force is consistent with a critical angle of release in live gecko toes and isolated setal arrays, and also with our prior observations of single setae. We introduced a new model, frictional adhesion, for gecko pad attachment and compared it to existing models of adhesive contacts. In an analysis of clinging stability of a gecko on an inclined plane each adhesive model predicted a different force control strategy. The frictional adhesion model provides an explanation for the very low detachment forces observed in climbing geckos that does not depend on toe peeling.  (+info)

Cloning and characterization of scale beta-keratins in the differentiating epidermis of geckoes show they are glycine-proline-serine-rich proteins with a central motif homologous to avian beta-keratins. (4/17)

The beta-keratins constitute the hard epidermis and adhesive setae of gecko lizards. Nucleotide and amino acid sequences of beta-keratins in epidermis of gecko lizards were cloned from mRNAs. Specific oligonucleotides were used to amplify by 3'- and 5'-rapid amplification of cDNA ends analyses five specific gecko beta-keratin cDNA sequences. The cDNA coding sequences encoded putative glycine-proline-serine-rich proteins of 16.8-18 kDa containing 169-191 amino acids, especially 17.8-23% glycine, 8.4-14.8% proline, 14.2-18.1% serine. Glycine-rich repeats are localized toward the initial and end regions of the protein, while a central region, rich in proline, has a strand conformation (beta-pleated fold) likely responsible for the formation of beta-keratin filaments. It shows high homology with a core region of other lizard keratins, avian scale, and feather keratins. Northern blotting and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis show a higher beta-keratin gene expression in regenerating epidermis compared with normal epidermis. In situ hybridization confirms that mRNAs for these proteins are expressed in cells of the differentiating oberhautchen cells and beta-cells. Expression in adhesive setae of climbing lamellae was shown by RT-PCR. Southern blotting analysis revealed that the proteins are encoded by a multigene family. PCR analysis showed that the genes are presumably located in tandem along the DNA and are transcribed from the same DNA strand like in avian beta-keratins.  (+info)

Ancestrally high elastic modulus of gecko setal beta-keratin. (5/17)

Typical bulk adhesives are characterized by soft, tacky materials with elastic moduli well below 1MPa. Geckos possess subdigital adhesives composed mostly of beta-keratin, a relatively stiff material. Biological adhesives like those of geckos have inspired empirical and modelling research which predicts that even stiff materials can be effective adhesives if they take on a fibrillar form. The molecular structure of beta-keratin is highly conserved across birds and reptiles, suggesting that material properties of gecko setae should be similar to that of beta-keratin previously measured in birds, but this has yet to be established. We used a resonance technique to measure elastic bending modulus in two species of gecko from disparate habitats. We found no significant difference in elastic modulus between Gekko gecko (1.6 GPa +/- 0.15s.e.; n=24 setae) and Ptyodactylus hasselquistii (1.4 GPa +/- 0.15s.e.; n=24 setae). If the elastic modulus of setal keratin is conserved across species, it would suggest a design constraint that must be compensated for structurally, and possibly explain the remarkable variation in gecko adhesive morphology.  (+info)

Expression of beta-keratin mRNAs and proline uptake in epidermal cells of growing scales and pad lamellae of gecko lizards. (6/17)

Beta-keratins form a large part of the proteins contained in the hard beta layer of reptilian scales. The expression of genes encoding glycine-proline-rich beta-keratins in normal and regenerating epidermis of two species of gecko lizards has been studied by in situ hybridization. The probes localize mRNAs in differentiating oberhautchen and beta cells of growing scales and in modified scales, termed pad lamellae, on the digits of gecko lizards. In situ localization at the ultrastructural level shows clusters of gold particles in the cytoplasm among beta-keratin filaments of oberhautchen and beta cells. They are also present in the differentiating elongation or setae of oberhautchen cells present in pad lamellae. Setae allow geckos to adhere and climb vertical surfaces. Oberhautchen and beta cells also incorporate tritiated proline. The fine localization of the beta-keratin mRNAs and the uptake of proline confirms the biomolecular data that identified glycine-proline-rich beta-keratin in differentiating beta cells of gecko epidermis. The present study also shows the presence of differentiating and metabolically active cells in both inner and outer oberhautchen/beta cells at the base of the outer setae localized at the tip of pad lamellae. The addition of new beta and alpha cells to the corneous layer near the tip of the outer setae explains the anterior movement of the setae along the apical free-margin of pad lamellae. The rapid replacement of setae ensures the continuous usage of the gecko's adhesive devices, the pad lamellae, during most of their active life.  (+info)

Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization. (7/17)

Beta-keratins of reptilian scales have been recently cloned and characterized in some lizards. Here we report for the first time the sequence of some beta-keratins from the snake Elaphe guttata. Five different cDNAs were obtained using 5'- and 3'-RACE analyses. Four sequences differ by only few nucleotides in the coding region, whereas the last cDNA shows, in this region, only 84% of identity. The gene corresponding to one of the cDNA sequences has a single intron present in the 5'-untranslated region. This genomic organization is similar to that of birds' beta-keratins. Cloning and Southern blotting analysis suggest that snake beta-keratins belong to a family of high-related genes as for geckos. PCR analysis suggests a head-to-tail orientation of genes in the same chromosome. In situ hybridization detected beta-keratin transcripts almost exclusively in differentiating oberhautchen and beta-cells of the snake epidermis in renewal phase. This is confirmed by Northern blotting that showed, in this phase, a high expression of two different transcripts whereas only the longer transcript is expressed at a much lower level in resting skin. The cDNA coding sequences encoded putative glycine-proline-serine rich proteins containing 137-139 amino acids, with apparent isoelectric point at 7.5 and 8.2. A central region, rich in proline, shows over 50% homology with avian scale, claw, and feather keratins. The prediction of secondary structure shows mainly a random coil conformation and few beta-strand regions in the central region, likely involved in the formation of a fibrous framework of beta-keratins. This region was possibly present in basic reptiles that originated reptiles and birds.  (+info)

Beta-keratins of turtle shell are glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds. (8/17)

 (+info)