Cardiac enkephalins interrupt vagal bradycardia via delta 2-opioid receptors in sinoatrial node. (25/210)

Local cardiac opioids appear to be important in determining the quality of vagal control of heart rate. Introduction of the endogenous opioid methionine-enkephalin-arginine-phenylalanine (MEAP) into the interstitium of the canine sinoatrial node by microdialysis attenuates vagally mediated bradycardia through a delta-opioid receptor mechanism. The following studies were conducted to test the hypothesis that a delta(2)-opiate receptor subtype mediates the interruption of vagal transmission. Twenty mongrel dogs were anesthetized and instrumented with microdialysis probes inserted into the sinoatrial node. Vagal frequency responses were performed at 1, 2, and 3 Hz during vehicle infusion and during treatment with the native agonist MEAP, the delta(1)-opioids 2-methyl-4aa-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aalpha-octahydroquinolino[2,3,3- g]isoquinoline (TAN-67) and [d-pen(2,5)]-enkephalin (DPDPE), and the delta(2) opioid deltorphin II. The vagolytic effects of intranodal MEAP and deltorphin were then challenged with the delta(1)- and delta(2)-opioid receptor antagonists 7-benzylidenenaltrexone (BNTX) and naltriben, respectively. Although the positive control deltorphin II was clearly vagolytic in each experimental group, TAN-67 and DPDPE were vagolytically ineffective in the same animals. In contrast, TAN-67 improved vagal bradycardia by 30-35%. Naltriben completely reversed the vagolytic effects of MEAP and deltorphin. BNTX was ineffective in this regard but did reverse the vagal improvement observed with TAN-67. These data support the hypothesis that the vagolytic effect of the endogenous opioid MEAP was mediated by delta(2)-opioid receptors located in the sinoatrial node. These data also support the existence of vagotonic delta(1)-opioid receptors also in the sinoatrial node.  (+info)

Relating neuronal nicotinic acetylcholine receptor subtypes defined by subunit composition and channel function. (26/210)

Neuronal nicotinic acetylcholine receptors (nAChRs) are widespread, diverse ion channels involved in synaptic signaling, addiction, and disease. Despite their importance, the relationship between native nAChR subunit composition and function remains poorly defined. Chick ciliary ganglion neurons express two major nAChR types: those recognized by alpha-bungarotoxin (alphaBgt), nearly all of which contain only alpha7 subunits (alpha7-nAChRs) and those insensitive to alphaBgt, which contain alpha3, alpha5, beta4, and, in some cases, beta2 subunits (alpha3*-nAChRs). We explored the relationship between nAChR composition and channel function using toxins recognizing alpha7 subunits (alphaBgt), and alpha3/beta4 (alpha-conotoxin-AuIB), or alpha3/beta2 (alpha-conotoxin-MII) subunit interfaces to perturb responses induced by nicotine, alpha7-, or alpha3-selective agonists (GTS-21 or epibatidine, respectively). Using these reagents, fast-decaying whole-cell current components were attributed solely to alpha7-nAChRs, and slow-decaying components mostly to alpha3*-nAChRs. In outside-out patches, nicotine activated brief 60- and 80-pS single nAChR channel events, and mixed-duration 25- and 40-pS nAChR events. Subsequently, 60- and 80-pS nAChR events and most brief 25- and 40-pS events were attributed to alpha7-nAChRs, and long 25- and 40-pS events to alpha3*-nAChRs. alpha3*-nAChRs lacking beta2 subunits seemed responsible for long 25 pS nAChR events, whereas those containing beta2 subunits mediated the long 40 pS nAChR events that dominate single-channel records. These results reveal greater functional heterogeneity for alpha7-nAChRs than previously expected and indicate that beta2 subunits contribute importantly to alpha3*-nAChR function. By linking structural to functional nAChR subtypes, the findings also illustrate a useful pharmacological strategy for selectively targeting nAChRs.  (+info)

Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. (27/210)

Neutral sphingomyelinase (N-SMase) is one of the key enzymes involved in the generation of ceramide; however, the gene(s) encoding for the mammalian N-SMase is still not well defined. Previous studies on the cloned nSMase1 had shown that the protein acts primarily as lyso-platelet-activating factor-phospholipase C. Recently the cloning of another putative N-SMase, nSMase2, was reported. In this study, biochemical characterization of the mouse nSMase2 was carried out using the overexpressed protein in yeast cells in which the inositol phosphosphingolipid phospholipase C (Isc1p) was deleted. N-SMase activity was dependent on Mg(2+) and was activated by phosphatidylserine and inhibited by GW4869. The ability of nSMase2 to recognize endogenous sphingomyelin (SM) as substrate was investigated by overexpressing nSMase2 in MCF7 cells. Mass measurements showed a 40% decrease in the SM levels in the overexpressor cells, and labeling studies demonstrated that nSMase2 accelerated SM catabolism. Accordingly, ceramide measurement showed a 60 +/- 15% increase in nSMase2-overexpressing cells compared with the vector-transfected MCF7. The role of nSMase2 in cell growth was next investigated. Stable overexpression of nSMase2 resulted in a 30-40% decrease in the rate of growth at the late exponential phase. Moreover, tumor necrosis factor induced approximately 50% activation of nSMase2 in MCF7 cells overexpressing the enzyme, demonstrating that nSMase2 is a tumor necrosis factor-responsive enzyme. In conclusion, these results 1) show that nSMase2 is a structural gene for nSMase, 2) suggest that nSMase2 acts as a bona fide N-SMase in cells, and 3) implicate nSMase2 in the regulation of cell growth and cell signaling.  (+info)

Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. (28/210)

This study was designed to determine the safety, tolerability, pharmacokinetics and effects on cognitive function of GTS-21 in healthy, male volunteers. A total of 18 subjects were randomized to GTS-21 (25, 75 and 150 mg) or placebo administered three times daily (first 4 days, once on Day 5) for three, 5-day sessions. GTS-21 was well tolerated up to doses of 450 mg/day, with no clinically significant safety findings. C(max) and the area under the plasma concentration of GTS-21 and the metabolite 4-OH-GTS-21 increased in a dose-related fashion; although considerable intersubject variability occurred, it decreased with continued dosing. GTS-21 showed statistically significant enhancement of three measures of cognitive function (attention, working memory, episodic secondary memory) compared to placebo. A relationship between exposure to GTS-21 and the magnitude of the cognitive response was apparent, with maximal effect approached for doses between 75 and 150 mg three times a day. These data indicate that GTS-21 may represent a novel treatment for dementia.  (+info)

Adenosine and opioid receptor-mediated cardioprotection in the rat: evidence for cross-talk between receptors. (29/210)

The relative roles of free-radical production, mitochondrial ATP-sensitive K+ (mitoKATP) channels and possible receptor cross-talk in both opioid and adenosine A1 receptor (A1AR) mediated protection were assessed in a rat model of myocardial infarction. Sprague-Dawley rats were subjected to 30 min of occlusion and 90 min of reperfusion. The untreated rats exhibited an infarct of 58.8 +/- 2.9% [infarct size (IS)/area at risk (AAR), %] at the end of reperfusion. Pretreatment with either the nonselective opioid receptor agonist morphine or the selective A1AR agonist 2-chloro-cyclopentyladenosine (CCPA) dramatically reduced IS/AAR to 41.1 +/- 2.2% and 37.9 +/- 5.5%, respectively (P < 0.05). Protection afforded by either morphine or CCPA was abolished by the reactive oxygen species scavenger N-(2-mercaptopropionyl)glycine or the mitoKATP channel blocker 5-hydroxydecanoate. Both morphine- and CCPA-mediated protection were attenuated by the selective A1AR antagonist 1,3-dipropyl-8-cyclopentylxanthine and the selective delta1-opioid receptor (DOR) antagonist 7-benzylidenealtrexone. Simultaneous administration of morphine and CCPA failed to enhance the infarct-sparing effect of either agonist alone. These data suggest that both DOR and A1AR-mediated cardioprotection are mitoKATP and reactive oxygen species dependent. Furthermore, these data suggest that there are converging pathways and/or receptor cross-talk between A1AR- and DOR-mediated cardioprotection.  (+info)

Tyrphostins: tyrosine kinase blockers as novel antiproliferative agents and dissectors of signal transduction. (30/210)

Protein tyrosine kinases (PTKs) are members of a growing family of oncoproteins and protooncoproteins that play a pivotal role in normal and abnormal proliferative processes. This hallmark identifies these unique proteins as potential targets for antiproliferative therapy. This review discusses the current status of PTK inhibitors, with special emphasis on tyrphostins as antiproliferative agents and as potential drugs for cancers, leukemias, psoriasis, and restenosis as well as other proliferative conditions. The development of tyrphostins as selective signal blockers can be viewed as a first step toward the development of "smart" cocktails as antiproliferative agents. Each of these custom-made cocktails will be aimed at proliferative conditions whose transduction pathways can be characterized by molecular tools. The review also discusses the use of PTK blockers as tools to study signal transduction processes in which protein tyrosine kinases are implicated.  (+info)

Pharmacological characterization of a 7-benzylidenenaltrexone-preferring opioid receptor in porcine ileal submucosa. (31/210)

In the intestine, opioids produce antidiarrhoeal and constipating actions that are mediated by enteric neurones. Through interactions with opioid receptors (ORs) on submucosal neurones, opioids suppress active ion transport evoked by transmural electrical stimulation (TES) in mucosa-submucosa sheets from the porcine ileum. In this study, we examined the pharmacological characteristics of the previously described OR, which is sensitive to the delta1-OR antagonist 7-benzylidenenaltrexone and modulates neurogenic transepithelial ion transport in this tissue preparation. Increases in short-circuit current (Isc, a measure of active anion transport) evoked by TES in ileal mucosa-submucosa sheets were inhibited by opioid agonists possessing high selectivity for either delta- or micro-ORs including [d-Pen2,5]enkephalin (DPDPE), [d-Ala2, Glu4]deltorphin II, and [d-Ala2, N-Me-Phe4, Gly5-ol]enkephalin (DAMGO). As determined by the Schild analysis, the actions of these agonists were competitively inhibited by 7-benzylidenenaltrexone. The nonequilibrium micro-OR antagonist beta-funaltrexamine inhibited the actions of DAMGO only at a high concentration (1 microm) but did not alter DPDPE or deltorphin II action. At concentrations up to 10 microm, the nonequilibrium delta-OR antagonist naltrindole 5'-isothiocyanate did not alter the actions of delta- or micro-OR agonists. Radioligand binding analyses of neuronal homogenates from the ileal submucosa revealed that the nonselective OR ligand [3H]diprenorphine bound to two populations of specific binding sites. One of these sites possessed binding characteristics similar to the delta-OR. In summary, neurogenic ion transport in the porcine intestine is modulated by an OR which shares pharmacological characteristics of both micro- and delta-ORs and may represent a novel receptor entity.  (+info)

HMN-176, an active metabolite of the synthetic antitumor agent HMN-214, restores chemosensitivity to multidrug-resistant cells by targeting the transcription factor NF-Y. (32/210)

HMN-176 ((E)-4-[[2-N-[4-methoxybenzenesulfonyl]amino]stilbazole]1-oxide) is an active metabolite of HMN-214 ((E)-4-[2-[2-(N-acetyl-N-[4-methoxybenzenesulfonyl]amino)stilbazole]]1-oxide), which has a potent antitumor activity in mouse xenograft models. In this study, we show that HMN-176 circumvents multidrug resistance in a K2 human ovarian cancer subline selected for Adriamycin resistance (K2/ARS). Upon treatment of K2/ARS cells with 3 microM HMN-176, the GI(50) of Adriamycin for the cells decreased by approximately 50%. To explore the molecular mechanism of this effect, we assessed the expression of the multidrug resistance gene (MDR1), which is constitutive in K2/ARS cells, at both the protein and the mRNA level. Western and reverse transcription-PCR analysis revealed that the expression of MDR1 was significantly suppressed by treatment with HMN-176. Furthermore, when administered p.o., HMN-214 suppressed the expression of MDR1 mRNA in a mouse xenograft model implanted with KB-A.1, an Adriamycin-resistant cell line. Luciferase reporter fusion gene analysis demonstrated that HMN-176 inhibited the Y-box-dependent promoter activity of the MDR1 gene in a dose-dependent manner. Moreover, we show by electrophoretic mobility shift assay that HMN-176 inhibits the binding of NF-Y, which is thought to be an essential factor for the basal expression of MDR1, to its target Y-box consensus sequence in the MDR-1 promoter. Inhibition of MDR-1 expression was achieved with pharmacological concentrations of HMN-176, suggesting that HMN-176 may act by two different mechanisms-cytotoxicity and MDR1 down-regulation-simultaneously. The data presented strongly suggest that the antitumor mechanism of HMN-176 (or its prodrug HMN-214 in vivo) is quite different from those of known antitumor agents.  (+info)