The cytokine IL-1beta transiently enhances P2X7 receptor expression and function in human astrocytes. (57/308)

Extracellular nucleotide di- and triphosphates such as ATP and ADP mediate their effects through purinergic P2 receptors belonging to either the metabotropic P2Y or the ionotropic P2X receptor family. The P2X7R is a unique member of the P2X family, which forms a pore in response to ligand stimulation, regulating cell permeability, cytokine release, and/or apoptosis. This receptor is also unique in that its affinity for the ligand benzoyl-benzoyl ATP (BzATP) is at least 10-fold greater than that of ATP. Primary human fetal astrocytes in culture express low-levels of P2X7R mRNA and protein, and BzATP induces only a slight influx in intracellular calcium [Ca2+]i, with little demonstrable effect on gene expression or pore formation in these cells. We now show that, following treatment with the proinflammatory cytokine IL-1beta, BzATP induces a robust rise in [Ca2+]i with agonist and antagonist profiles indicative of the P2X7R. IL-1beta also induced the formation of membrane pores as evidenced by the uptake of YO-PRO-1 (375 Da). Quantitative real-time PCR demonstrated transient upregulation of P2X7R mRNA in IL-1beta-treated cells, while FACS analysis indicated a similar upregulation of P2X7R protein at the cell membrane. In multiple sclerosis lesions, immunoreactivity for the P2X7R was demonstrated on reactive astrocytes in autopsy brain tissues. In turn, P2X7R stimulation increased the production of IL-1-induced nitric oxide synthase activity by astrocytes in culture. These studies suggest that signaling via the P2X7R may modulate the astrocytic response to inflammation in the human central nervous system.  (+info)

Molecular mechanisms and kinetics between DNA and DNA binding ligands. (58/308)

Mechanical properties of single double-stranded DNA (dsDNA) in the presence of different binding ligands were analyzed in optical-tweezers experiments with subpiconewton force resolution. The binding of ligands to DNA changes the overall mechanic response of the dsDNA molecule. This fundamental property can be used for discrimination and identification of different binding modes and, furthermore, may be relevant for various processes like nucleosome packing or applications like cancer therapy. We compared the effects of the minor groove binder distamycin-A, a major groove binding alpha-helical peptide, the intercalators ethidium bromide, YO-1, and daunomycin as well as the bisintercalator YOYO-1 on lambda-DNA. Binding of molecules to the minor and major groove of dsDNA induces distinct changes in the molecular elasticity compared to the free dsDNA detectable as a shift of the overstretching transition to higher forces. Intercalating molecules affect the molecular mechanics by a complete disappearance of the B-S transition and an associated increase in molecular contour length. Significant force hysteresis effects occurring during stretching/relaxation cycles with velocities >10 nm/s for YOYO-1 and >1000 nm/s for daunomycin. These indicate structural changes in the timescale of minutes for the YOYO-DNA and of seconds for the daunomycin-DNA complexes, respectively.  (+info)

Evaluation of complexes of DNA duplexes and novel benzoxazoles or benzimidazoles by electrospray ionization mass spectrometry. (59/308)

Electrospray ionization mass spectrometry is used to compare the metal ion binding and metal-mediated DNA binding of benzoxazole (1, 2, 3, 4) and benzimidazole (5) compounds and to elucidate the putative binding modes and stoichiometries. The observed metal versus non-metal-mediated DNA binding, as well as the specificity of DNA binding, is correlated with the biological activities of the analogs. The ESI-MS spectra for the antibacterial benzoxazole and benzimidazole analogs 4 and 5 demonstrated non-specific and non-metal-mediated binding to DNA, with the appearance of DNA complexes containing multiple ligands. The anticancer analog 2 demonstrates a clear preference for metal-mediated DNA interactions, with an apparent selectivity for Ni2+ -mediated binding over the more physiologically relevant Mg2+ or Zn2+ cations. Complexation between DNA and the biologically inactive analog 1 was not observed, either in the absence or presence of metal cations.  (+info)

Large fragments of human serum albumin. (60/308)

Large fragments of human serum albumin were produced by treatment of the native protein with pepsin at pH3.5. Published sequences of human albumin [Behrens, Spiekerman & Brown (1975) Fed. Proc. Fed. Am. Soc. Exp. Biol. 34, 591; Meloun, Moravek & Kostka (1975) FEBSLett.58, 134-137]were used to locate the fragments in the primary structure. The fragments support both the sequence and proposed disulphide-linkage pattern (Behrens et al., 1975). As the pH of a solution of albumin is lowered from pH4 to pH3.5, the protein undergoes a reversible conformational change known as the N-F transition. The distribution of large fragments of human albumin digested with pepsin in the above pH region was critically dependent on pH. It appeared that this distribution was dependent on the conformation of the protein at low pH, rather than the activity of pepsin. The yields of the large fragments produced by peptic digestion at different values of pH suggested that the C-terminal region of albumin unfolds or separates from the rest of the molecule during the N-F transition. The similarity of peptic fragments of human and bovine albumin produced under identical conditions supports the proposed similar tertiary structure of these molecules.  (+info)

A stopped-flow kinetic study of the assembly of nonviral gene delivery complexes. (61/308)

Stopped-flow circular dichroism and fluorescence spectroscopy are used to characterize the assembly of complexes consisting of plasmid DNA bound to the cationic lipids dimethyldioctadecylammonium bromide and 1, 2-dioleoyl- 3-trimethylammonium-propane and a series of polyamidoamine dendrimers. The kinetics of complexation determined from the stopped-flow circular dichroism measurements suggests complexation occurs within 50 ms. Further analysis, however, was precluded by the presence of mixing (shear) artifacts. Stopped-flow fluorescence employing the high-affinity DNA dyes Hoechst 33258 and YOYO-1 was able to resolve two sequential steps in the assembly of complexes that are assigned to binding/dehydration and condensation events. The rates of each process were determined over the temperature range of 10-50 degrees C and activation energies were determined from the slope of Arrhenius plots. The behavior of polyamidoamine dendrimers can be separated into two classes based on their differing binding modes: generation 2 and the larger generations (G4, G7, and G9). The larger generations have activation energies for binding that follow the trend G4 > G7 > G9. The activation energies for condensation (compaction) of complexes composed of these same dendrimers have the opposite trend G9 > G7 > G4. It is postulated that a balance between a more energetically favorable condensation and less favorable binding may prove beneficial in enhancing gene delivery.  (+info)

Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. (62/308)

Benzoxazolin-2(3H)-one (BOA) is an allelochemical most commonly associated with monocot species, formed from the O-glucoside of 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one by a two-step degradation process. The capacity of Arabidopsis to detoxify exogenously supplied BOA was analyzed by quantification of the major known metabolites BOA-6-OH, BOA-6-O-glucoside, and glucoside carbamate, revealing that detoxification occurs predominantly through O-glucosylation of the intermediate BOA-6-OH, most likely requiring the sequential action of as-yet-unidentified cytochrome P450 and UDP-glucosyltransferase activities. Transcriptional profiling experiments were also performed with Arabidopsis seedlings exposed to BOA concentrations, representing I(50) and I(80) levels based on root elongation inhibition assays. One of the largest functional categories observed for BOA-responsive genes corresponded to protein families known to participate in cell rescue and defense, with the majority of these genes potentially associated with chemical detoxification pathways. Further experiments using a subset of these genes revealed that many are also transcriptionally induced by a variety of structurally diverse xenobiotic compounds, suggesting they comprise components of a coordinately regulated, broad specificity xenobiotic defense response. The data significantly expand upon previous studies examining plant transcriptional responses to allelochemicals and other environmental toxins and provide novel insights into xenobiotic detoxification mechanisms in plants.  (+info)

Design and characterization of a compact dual channel virus counter. (63/308)

BACKGROUND: Although there is a growing need in the field of biotechnology to rapidly and accurately quantify viruses, time-consuming techniques such as the plaque titer method remain the "gold standard." Flow cytometric methods for virus quantification offer the advantages of rapid analysis and statistical treatment. The technique presented in this work represents the first demonstration of a flow cytometric determination of a viral count that is directly related to the count obtained by plaque titer. METHODS: A flow cytometric instrument for rapid quantification of virus particles was designed, constructed, and thoroughly characterized. A two-color method, which involved staining the viral genome and the protein coat for baculoviruses, was developed in addition to an algorithm to identify simultaneous events on the DNA and protein channels. RESULTS: The instrument was fully characterized, which included analysis of the data acquisition rate, sampling time, flow rate, detection efficiency, linear dynamic range, channel cross-talk, and the limit of detection. Baculovirus samples were analyzed and the results were compared with concentrations obtained by a one-channel flow cytometer and plaque assay. CONCLUSIONS: The dual channel virus counter yields a representative value for the concentration of active viruses in an unpurified sample when compared with plaque assay and a one-channel flow cytometer. The technique is rapid (within minutes), requires only minimal sample preparation and minimum sample size (approximately 100 microl).  (+info)

Contrasting contribution of 5-hydroxytryptamine 1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain. (64/308)

Several novel antipsychotics, such as aripiprazole, bifeprunox, SSR181507 [(3-exo)-8-benzoyl-N-(((2S)7-chloro-2,3-dihydro-1,4-benzodioxin-1-yl)methyl)-8-az abicyclo(3.2.1)octane-3-methanamine], and SLV313 [1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4-[5-(4-fluorophenyl)-pyridin-3-ylmethyl]- piperazine], activate serotonin 5-hydroxytryptamine (5-HT)1A receptors. Such activity is associated with enhanced treatment of negative symptoms and cognitive deficits, which may be mediated by modulation of cerebral dopamine and serotonin levels. We employed microdialysis coupled to high pressure liquid chromatography with electrochemical detection to examine 5-HT1A receptor activation in the modulation of extracellular dopamine in medial prefrontal cortex and serotonin in hippocampus of freely moving rats. The above compounds were compared with drugs that have less interaction with 5-HT1A receptors (clozapine, nemonapride, ziprasidone, olanzapine, risperidone, and haloperidol). Hippocampal 5-HT was decreased by bifeprunox, SSR181507, SLV313, sarizotan, and nemonapride, effects similar to those seen with the 5-HT1A agonist, (+)-8-hydroxy-2-(di-n-propylamino)tetralin [(+)8-OH-DPAT], consistent with activation of 5-HT1A autoreceptors. These decreases were reversed by the selective 5-HT1A antagonist, WAY100635 [N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxa mide]. In contrast, haloperidol, risperidone, clozapine, olanzapine, ziprasidone, and aripiprazole did not significantly modify hippocampal serotonin levels. In medial prefrontal cortex, dopamine levels were increased by SSR181507, SLV313, sarizotan, and (+)8-OH-DPAT. These effects were reversed by WAY100635, indicating mediation by 5-HT1A receptors. In contrast, the increases in dopamine levels induced by clozapine, risperidone, olanzapine, and ziprasidone were not blocked by WAY100635, consistent with predominant influence of other mechanisms in the actions of these drugs. Haloperidol, nemonapride, and the D2 partial agonists, aripiprazole and bifeprunox, did not significantly alter dopamine release. Taken together, these data demonstrate the diverse contribution of 5-HT1A receptor activation to the profile of antipsychotics and suggest that novel drugs selectively targeting D2 and 5-HT1A receptors may present distinctive therapeutic properties.  (+info)