Therapeutic potential of a specific chymase inhibitor in atopic dermatitis. (25/308)

A novel therapeutic mechanism may be the key to improving the chief symptoms and signs of atopic dermatitis (AD), which are persistent pruritus and high serum IgE. We demonstrate here that mast cell chymase may be a possible initiating factor and that the orally active specific inhibitor Y-40613 may have a therapeutic potential in the treatment of AD. We found that Y-40613 (2-[5-amino-2-(4-fluorophenyl)-1,6-dihydro-6-oxo-1-pyrimidinyl]-N-[1-[(5-methoxyc arbonyl-2-benzoxazolyl)carbonyl]-2-phenylethyl]acetamide) dose-dependently suppressed the scratching response in a mouse pruritus model, with inhibitory efficacy enhanced by combination with conventional drugs, suggesting that chymase contributes to the development of pruritus by a unique mechanism or mechanisms. In fact, chymase injected in the model induced the scratching response. In vitro IgE production from mouse B cells was increased by purified rat chymase and suppressed by Y-40613. Increased serum IgE observed in Brown Norway rats injected with mercury chloride was suppressed by Y-40613. Furthermore, Y-40613 lowered ear thickness as well as serum IgE level in a mouse contact dermatitis model. Taken together, these findings suggest that the specific chymase inhibitor Y-40613 may ameliorate symptoms of AD through the dual inhibition of the chymase-dependent IgE production pathway and itching sensation.  (+info)

Imaging of chromosomes at nano-meter scale resolution using scanning near-field optical/atomic force microscopy. (26/308)

Topographic and fluorescent images of whole barley chromosomes stained with YOYO-1 were observed simultaneously by scanning near-field optical/ atomic force microscopy (SNOM/AFM). The chromosome was relatively smooth and flat in the topographic images and no significant difference in height was present between regions of high fluorescent and low fluorescent intensity in the chromosomes. The telomeric region, labeled by fluorescence in situ hybridization (FISH) method, was also observed by SNOM/AFM at high resolution, and fluorescent signals of the telomeric region were clearly defined on the topographic image of chromatin fibers on the chromosome at the nano-meter scale level. Although the telomeric signals were usually visualized as a single fluorescent region at the end of sister chromatids by conventional light microscopy, they were observed separately as two fluorescent regions, less than 100-200 nm distance, using the SNOM/AFM. The SNOM/AFM offers great potential in identifying particular single gene location on chromosomes in the near future.  (+info)

Orexins induce increased excitability and synchronisation of rat sympathetic preganglionic neurones. (27/308)

The neuropeptides orexin A and B are synthesised by perifornical and lateral hypothalamic (LH) neurones and exert a profound influence on autonomic sympathetic processes. LH neurones project to spinal areas containing sympathetic preganglionic neurones (SPNs) and therefore may directly modulate sympathetic output. In the present study we examined the possibility that orexinergic inputs from the LH influence SPN activity. Orexin-positive neurones in the LH were labelled with pseudorabies virus injected into the liver of parasympathetically denervated animals and orexin fibres were found adjacent to the soma and dendrites of SPNs. Orexin A or B (10-1000 nM) directly and reversibly depolarised SPNs in spinal cord slices. The response to orexin A was significantly reduced in the presence of the orexin receptor 1 (OX1R) antagonist SB334867A at concentrations of 1-10 micro M. Single cell reverse transcriptase-polymerase chain reaction revealed expression of mRNA for both OX1R and OX2R in the majority of orexin-sensitive SPNs. The orexin-induced depolarisation involved activation of pertussis toxin-sensitive G-proteins and closure of a K+ conductance via a protein kinase A (PKA)-dependent pathway that did not require an increase in intracellular Ca2+. Orexins also induced biphasic subthreshold membrane potential oscillations and synchronised activity between pairs of electrically coupled SPNs. Coupling coefficients and estimated junctional conductances between SPNs were not altered indicating synchronisation is due to activation of previously silent coupled neurones rather than modulation of gap junctions. These findings are consistent with a direct excitation and synchronisation of SPNs by orexinergic neurones that in vivo could increase the frequency and coherence of sympathetic nerve discharges and mediate LH effects on sympathetic components of energy homeostasis and cardiovascular control.  (+info)

Pharmacological and biophysical properties of the human P2X5 receptor. (28/308)

We constructed a full-length human P2X5 purinoceptor cDNA by incorporating a sequence corresponding to exon 10, which is missing in cDNAs cloned previously from human tissues. We studied the functional properties by patch-clamp recording and fluorescence imaging after expression in human embryonic kidney 293 cells. ATP (1-100 microM; half-maximal current at 4 microM) elicited inward currents at -60 mV; these persisted during brief (2 s) applications but declined during longer applications. The peak current was dependent on the holding potential and showed little rectification; however, both the desensitization during the application and the decline in the current when ATP was washed out were slower at +30 mV than at -60 mV. 2',3'-O-(4-Benzoyl)-benzoyl-ATP and alphabeta-methylene-ATP mimicked the action of ATP (half-maximal concentrations 6 and 161 microM, respectively). The currents were inhibited by suramin, pyridoxal-5-phosphate-6-azo-2',4'-disulfonic acid and Brilliant Blue G, with half-maximal inhibition at 3, 0.2, and 0.5 microM, respectively; 2',3'-O-(2',4',6'-trinitrophenol)-ATP (1 microM) was ineffective. Removing divalent cations did not significantly alter ATP concentration-response curves. Reversal potential measurements showed that the human P2X5 receptor was permeable to calcium (PCa/PNa = 1.5) and N-methyl-d-glucamine (NMDG) (PNMDG/PNa = 0.4); it was also permeable to chloride (PCl/PNa = 0.5) but not gluconate (Pgluc/PNa = 0.01) ions. The permeability to NMDG developed as quickly as the channel opened, in contrast to the P2X7 receptor where the NMDG permeability develops over several seconds. Cells expressing human P2X5 receptors also rapidly accumulated the propidium dye YO-PRO-1 in response to ATP.  (+info)

Identification of intermediate and branch metabolites resulting from biotransformation of 2-benzoxazolinone by Fusarium verticillioides. (29/308)

Detoxification of the maize (Zea mays) antimicrobial compound 2-benzoxazolinone by the fungal endophyte Fusarium verticillioides involves two genetic loci, FDB1 and FDB2, and results in the formation of N-(2-hydroxyphenyl)malonamic acid. Intermediate and branch metabolites were previously suggested to be part of the biotransformation pathway. Evidence is presented here in support of 2-aminophenol as the intermediate metabolite and 2-acetamidophenol as the branch metabolite, which was previously designated as BOA-X. Overall, 2-benzoxazolinone metabolism involves hydrolysis (FDB1) to produce 2-aminophenol, which is then modified (FDB2) by addition of a malonyl group to produce N-(2-hydroxyphenyl)malonamic acid. If the modification is prevented due to genetic mutation (fbd2), then 2-acetamidophenol may accumulate as a result of addition of an acetyl group to 2-aminophenol. This study resolves the overall chemistry of the 2-benzoxazolinone detoxification pathway, and we hypothesize that biotransformation of the related antimicrobial 6-methoxy-2-benzoxazolinone to produce N-(2-hydroxy-4-methoxyphenyl)malonamic acid also occurs via the same enzymatic modifications. Detoxification of these antimicrobials by F. verticillioides apparently is not a major virulence factor but may enhance the ecological fitness of the fungus during colonization of maize stubble and field debris.  (+info)

Physiological regulation and NO-dependent inhibition of migrating myoelectric complex in the rat small bowel by OXA. (30/308)

Orexin A (OXA)-positive neurons are found in the lateral hypothalamic area and the enteric nervous system. The aim of this study was to investigate the mechanism of OXA action on small bowel motility. Electrodes were implanted in the serosa of the rat small intestine for recordings of myoelectric activity during infusion of saline or OXA in naive rats, vagotomized rats, rats pretreated with guanethidine (3 mg/kg) or N(omega)-nitro-L-arginine (L-NNA; 1 mg/kg). Naive rats were given a bolus of the orexin receptor-1 (OX1R) antagonist (SB-334867-A; 10 mg/kg), and the effect of both OXA and SB-334867-A on fasting motility was studied. Double-label immunocytochemistry with primary antibodies against OXA, neuronal nitric oxide synthase (nNOS), and OX1R was performed. OXA induced a dose-dependent prolongation of the cycle length of the migrating myoelectric complex (MMC) and, in the higher doses, replaced the activity fronts with an irregular spiking pattern. Vagotomy or pretreatment with guanethidine failed to prevent the response to OXA. The OXA-induced effect on the MMC cycle length was completely inhibited by pretreatment with L-NNA (P < 0.05), as did SB-334867-A. The OX1R antagonist shortened the MMC cycle length from 14.1 (12.0-23.5) to 11.0 (9.5-14.7) min (P < 0.05) during control and treatment periods, respectively. Colocalization of OXA and nNOS was observed in myenteric neurons of the duodenum and nerve fibers in the circular muscle. Our results indicate that OXA inhibition of the MMC involves the OX1R and that activation of a L-arginine/NO pathway possibly originating from OX1R/nNOS-containing neurons in the myenteric plexus may mediate this effect. Endogenous OXA may have a physiological role in regulating the MMC.  (+info)

Increased intensities of YOYO-1-labeled DNA oligomers near silver particles. (31/308)

DNA detection is usually performed using fluorescence probes. Using a DNA oligomer stained with the widely used dye 1,1'-[1,3-propanediylbis[(dimethylimino)-3,1-propanediyl]]bis[4-[(3-methyl-2(3H)- benzoxazolylidene)methyl]]-quinolinum tetraiodide (YOYO-1), we show that a substrate containing silver particles can lead to a greater than 10-fold increase in the fluorescence intensity. Proximity to silver particles also increases the photostability of YOYO-1-DNA. These results suggest that substrates or gels containing silver particles may be used for increased sensitivity in DNA detection.  (+info)

Allelopathy as a new strategy for sustainable ecosystems development. (32/308)

Natural products involved in plant-plant and plant-microorganism ecological interaction (Allelochemicals) are an important potential source for alternative agrochemicals and pharmaceuticals, in order to solve the many problems derived from inadequate culture practices and abuse of synthetic herbicides. Isolation, structural determination, bioassay techniques and applicability for these compounds in crop protection and pharmaceutical research are discussed, and future trends on Allelochemicals applications are examined. The new strategies for sustainable ecosystems controlled by allelochemicals offer a particular interest for the development of human bases in space, since these products can stimulate or inhibit plant germination and growth, and permit to develop crops with low residue amounts in water, facilitating wastewater treatment and recycling.  (+info)