Activation of fibrinolysis by SMTP-7 and -8, novel staplabin analogs with a pseudosymmetric structure. (49/1330)

Two novel staplabin analogs, SMTP-7 and -8, have been isolated from cultures of Stachybotrys microspora IFO 30018. Spectroscopic analyses showed that the SMTP-7 molecule consisted of two identical staplabin core structures and ornithine which bridges the two partial structures. In the SMTP-8 molecule, the bridging unit was lysine. At concentrations of 80 approximately 150 microM, the two compounds caused 2- to 12-fold increase in urokinase-catalyzed plasminogen activation, fibrin binding of plasminogen, and urokinase- and plasminogen-mediated fibrinolysis. These activities of SMTP-7 and -8 were two to ten times higher than those of staplabin and previously isolated SMTPs, which exerted such effects at concentrations ranging from 150 to 800 microM.  (+info)

PKC-delta is an apoptotic lamin kinase. (50/1330)

Protein kinase C-delta is activated during apoptosis, following proteolytic cleavage by caspase 3. Furthermore, overexpression of the catalytic kinase fragment of PKC-delta induces the nuclear phenotype associated with apoptosis, though the molecular basis of this effect has not been determined. In these studies we have examined the role of PKC-delta in the disassembly of the nuclear lamina at apoptosis. The nuclear lamina is disassembled during mitosis and apoptosis and mitotic disassembly involves hyperphosphorylation of lamin proteins by mitotic lamin kinases. During apoptosis, lamin proteins are degraded by caspase 6 and the contribution made by phosphorylation has not been proven. We show here that protein kinase C-delta co-localized with lamin B during apoptosis and activation of PKC-delta by caspase 3 was concomitant with lamin B phosphorylation and proteolysis. Inhibition of PKC-delta delayed lamin proteolysis, even in the presence of active caspase 6, whilst inhibitors of mitotic lamin kinases were without effect. In addition recombinant human PKC-delta was able to phosphorylate lamin B in vitro suggesting that its actions are direct and not via an intermediary kinase. We propose that PKC-delta is an apoptotic lamin kinase and that efficient lamina disassembly at apoptosis requires both lamin hyperphosphorylation and caspase mediated proteolysis.  (+info)

Simultaneous monitoring of vascular contractility, intracellular pH and intracellular calcium in isolated rat mesenteric arteries; effects of weak bases. (51/1330)

We report the first simultaneous measurements of pHi, [Ca2+]i and tension, upon alteration of pHi, in isolated rat mesenteric arteries loaded with both carboxy SNARF and indo-1. In these vessels (pre-contracted by 30 mM KCl) alterations of pHi, by addition and subsequent washout of weak bases, produced complicated effects on tone. Although the changes in contractility did not mirror the changes in pHi they were, at all times, accompanied by parallel changes in [Ca2+]i.  (+info)

8,9-dihydroxy-8,9-dihydrodibenzo[a,l]pyrene is a potent morphological cell-transforming agent in C3H10T(1)/(2)Cl8 mouse embryo fibroblasts in the absence of detectable stable covalent DNA adducts. (52/1330)

The comparative genotoxic effects of racemic trans-8,9-dihydroxy-8, 9-dihydrodibenzo[a,l]pyrene (trans-DB[a,l]P-8,9-diol), the metabolic K-region dihydrodiol of dibenzo[a,l] pyrene (DB[a,l]P) (dibenzo[def, p]chrysene) and DB[a,l]P in transformable mouse embryo C3H10T(1)/(2)Cl8 (C3H10T(1)/(2)) fibroblasts was investigated. The C3H10T(1)/(2) mouse embryo morphological cell-transforming activities of these polycyclic aromatic hydrocarbons (PAHs) were assayed using concentration-response studies. At concentrations of 33 nM and above both trans-DB[a,l]P-8,9-diol and DB[a,l]P produced significant (and similar) numbers of type II and III foci per dish and numbers of dishes with type II and II foci. Concomitant cytotoxicity studies revealed a reduction in colony survival of approximately 25% up to 198 nM for both PAHs. DNA adducts of trans-DB[a,l]P-8,9-diol and DB[a,l]P in C3H10T(1)/(2) cells were analyzed by a (32)P-post-labeling TLC/HPLC method. No adducts were observed in the DNA of C3H10T(1)/(2) cells treated with trans-DB[a, l]P-8,9-diol at concentrations that induced morphological cell transformation. Under the same exposure and chromatographic conditions, DNA adducts of deoxyadenosine and deoxyguanosine derived from the fjord region anti-DB[a,l]P-11,12-diol-13,14-epoxide and syn-DB[a,l]P-11,12-diol-13,14-epoxide were observed in the DNA of DB[a,l]P-treated cells. These results indicate that trans-DB[a,l]P-8, 9-diol has intrinsic genotoxic activity equal to that of DB[a,l]P, based on morphological cell transformation of mouse embryo fibroblasts. The activity of trans-DB[a,l]P-8,9-diol is apparently not associated with the formation of observable stable covalent DNA adducts. These results suggest that under appropriate conditions, trans-DB[a,l]P-8,9-diol may serve as an intermediate in the genotoxicity of DB[a,l]P.  (+info)

Exaggerated impact of ATP-sensitive K(+) channels on afferent arteriolar diameter in diabetes mellitus. (53/1330)

Experiments were performed to determine the involvement of ATP-sensitive K(+) channels (K(ATP) channels) in the renal afferent arteriolar dilation that occurs during the hyperfiltration stage of insulin-dependent diabetes mellitus (IDDM). IDDM was induced in rats by streptozotocin (STZ) injection, and adequate insulin was provided to maintain moderate hyperglycemia. Sham rats received vehicle treatments. Two weeks later, afferent arteriolar function was assessed using the in vitro blood-perfused juxtamedullary nephron technique. Baseline afferent arteriolar lumen diameter was greater in STZ rats (25.9 +/- 1.1 microm) than in sham rats (20.8 +/- 1.0 microm). Glibenclamide (3 to 300 microM) had virtually no effect on afferent arterioles from sham rats; however, this K(ATP) antagonist caused concentration-dependent afferent arteriolar constriction in kidneys from STZ-treated rats, restoring lumen diameter to 20.6 +/- 1.7 microm (P > 0.05 versus sham baseline). In both groups of rats, pinacidil (a cyanoguanidine K(ATP) agonist; 0.3 to 300 microM) evoked concentration-dependent afferent arteriolar dilation, indicating the functional expression of K(ATP) channels; however, lumen diameter was increased by 73% in STZ kidneys but only by 48% in sham kidneys. The gliben-clamide-sensitive afferent arteriolar dilator response to 1 microM PCO-400 (a benzopyran K(ATP) agonist) was also accentuated in STZ kidneys. These observations suggest that increases in both the functional availability and basal activation of K(ATP) channels promote afferent arteriolar vasodilation during the early stage of IDDM, changes that likely contribute to the etiology of diabetic hyperfiltration.  (+info)

Sensitivity of Kir6.2-SUR1 currents, in the absence and presence of sodium azide, to the K(ATP) channel inhibitors, ciclazindol and englitazone. (54/1330)

Two electrode voltage clamp and single channel recordings were used to investigate the actions of various ATP-sensitive K(+) (K(ATP)) channel inhibitors on cloned K(ATP) channels, expressed in Xenopus oocytes and HEK 293 cells. Oocytes expressing Kir6.2 and SUR1 gave rise to inwardly rectifying K(+) currents following bath application of 3 mM sodium azide. Inside-out recordings from non-azide treated oocytes demonstrated the presence of K(ATP) channels which were activated by direct application of 3 mM azide and 0.1 mM Mg-ATP. Tolbutamide inhibited azide-induced macroscopic Kir6.2-SUR1 currents, recorded from Xenopus oocytes, with an IC(50) value similar to native K(ATP) channels. Ciclazindol and englitazone also inhibited these currents in a concentration-dependent manner, but with relative potencies substantially less than for native K(ATP) channels. Single channel currents recorded from inside-out patches excised from oocytes expressing Kir6.2-SUR1 currents were inhibited by tolbutamide, Mg-ATP, englitazone and ciclazindol, in the absence of azide, with potencies similar to native K(ATP) channels. In the presence of azide, Kir6.2-SUR1 currents were inhibited by englitazone and tolbutamide but not ciclazindol. Single channel currents derived from Kir6.2Delta26, expressed in HEK 293 cells, were inhibited by ciclazindol and englitazone irrespective of the absence or presence of SUR1. In conclusion, heterologously expressed Kir6.2 and SUR1 recapitulate the pharmacological profile of native pancreatic beta-cell K(ATP) channels. However, currents induced by azide exhibit a substantially reduced sensitivity to ciclazindol. It is likely that ciclazindol and englitazone inhibit K(ATP) currents by interaction with the Kir6.2 subunit.  (+info)

S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: I. Receptorial, electrophysiological and neurochemical profile compared with GR218,231 and L741,626. (55/1330)

The benzopyranopyrrole S33084 displayed pronounced affinity (pK(i) = 9.6) for cloned human hD(3)-receptors, and >100-fold lower affinity for hD(2) and all other receptors (>30) examined. S33084 concentration dependently, potently, and competitively (pA(2) = 9.7) antagonized dopamine (DA)-induced [(35)S]guanosine-5'- O-(3-thio)triphosphate (GTPgammaS) binding at hD(3)-receptors. It also concentration dependently abolished stimulation by DA of hD(3)-receptor-coupled mitogen-activated protein kinase. Administered alone, S33084 did not modify dialysate levels of DA in the frontal cortex, nucleus accumbens, or striatum of freely moving rats, nor the firing rate of ventrotegmental dopaminergic cell bodies. Furthermore, it had minimal effect on DA turnover in mesocortical, mesolimbic, and nigrostriatal projection regions. However, S33084 dose dependently blocked the suppressive influence of the preferential D(3)-agonist PD128,907 on frontocortical release of DA. Furthermore, it likewise antagonized the inhibitory influence of PD128,907 on the electrical activity of ventrotegmental dopaminergic neurons. Although less potent than S33084, GR218,231 likewise behaved as a selective hD(3)- versus hD(2)-receptor antagonist and its neurochemical and electrophysiological profiles were similar. In contrast, L741,626 was a preferential antagonist at hD(2) versus hD(3) sites. In vivo, on administration alone, L741,626 increased frontocortical, mesolimbic, and (more potently) striatal DA release, enhanced the firing rate of dopaminergic perikarya, and accelerated cerebral DA synthesis. It also blocked the actions of PD128,907. In conclusion, S33084 is a novel, potent, selective, and competitive antagonist at hD(3)-receptors. Although GR218,231 behaves similarly, L741,626 is a preferential D(2)-receptor antagonist. DA D(2)- but not D(3)-(auto) receptors tonically inhibit ascending dopaminergic pathways, although the latter may contribute to phasic suppression of DA release in frontal cortex.  (+info)

S33084, a novel, potent, selective, and competitive antagonist at dopamine D(3)-receptors: II. Functional and behavioral profile compared with GR218,231 and L741,626. (56/1330)

The selective dopamine D(3)-receptor antagonist S33084 dose dependently attenuated induction of hypothermia by 7-hydroxy-2-dipropylaminotetralin (7-OH-DPAT) and PD128,907. S33084 also dose dependently reduced 7-OH-DPAT-induced penile erections (PEs) but had little effect on 7-OH-DPAT-induced yawning and hypophagia, and it did not block contralateral rotation elicited by the preferential D(3) agonist quinpirole in unilateral substantia nigra-lesioned rats. In models of potential antipsychotic activity, S33084 had little effect on conditioned avoidance behavior and the locomotor response to amphetamine and cocaine in rats, and weakly inhibited apomorphine-induced climbing in mice. Moreover, S33084 was inactive in models of potential extrapyramidal activity in rats: induction of catalepsy and prolactin secretion and inhibition of methylphenidate-induced gnawing. Another selective D(3) antagonist, GR218,231, mimicked S33084 in inhibiting 7-OH-DPAT-induced PEs and hypothermia but neither hypophagia nor yawning behavior. Similarly, it was inactive in models of potential antipsychotic and extrapyramidal activity. In distinction to S33084 and GR218,231, the preferential D(2) antagonist L741,626 inhibited all responses elicited by 7-OH-DPAT. Furthermore, it displayed robust activity in models of antipsychotic and, at slightly higher doses, extrapyramidal activity. In summary, S33084 was inactive in models of potential antipsychotic and extrapyramidal activity and failed to modify spontaneous locomotor behavior. Furthermore, it did not affect hypophagia or yawns, but attenuated hypothermia and PEs, elicited by 7-OH-DPAT. This profile was shared by GR218,231, whereas L741,626 was effective in all models. Thus, D(2)-receptors are principally involved in these paradigms, although D(3)-receptors may contribute to induction of hypothermia and PEs. S33084 should comprise a useful tool for further exploration of the pathophysiological significance of D(3)- versus D(2)-receptors.  (+info)