Orientation of GTP and ADP within their respective binding sites in glutamate dehydrogenase. (9/275)

Previous studies have identified the guanine and adenine binding domains of the GTP and ADP binding sites of GDH. In this study the peptide sequences within or near to the terminal phosphate-binding domains of the GTP and ADP binding sites of bovine liver glutamate dehydrogenase (GDH) were identified using photoaffinity labeling with the benzophenone nucleotide derivatives, [gamma-32P]GTPgammaBP and [gamma-32P]ATPgammaBP. Without activating light, GTPgammaBP exhibited inhibiting effects on the GDH reaction similar to GTP; ATPgammaBP, as expected, produced activating effects similar to those of ADP. Photoinsertion into GDH by both probes exhibited saturation effects in agreement with the respective kinetic effects. Specificity of labeling was supported by specific and effective reduction of photoinsertion of [gamma-32P]GTPgammaBP and [gamma-32P]ATPgammaBP into GDH by GTP and ADP, respectively. Using a combination of immobilized Fe3+-chelate affinity chromatography and reversed-phase HPLC, photolabeled peptides located within or near the phosphate-binding domains of the GTP and ADP sites were isolated. Sequence analysis showed that GTPgammaBP primarily modified a peptide near the middle of the GDH sequence, Asn135-Lys143 and Glu290-Lys295. However, ATPgammaBP modified a single peptide corresponding to the sequence Met411-Arg419 near the C-terminal domain. Using these results and the data from the previously identified base-binding domain peptides the orientation of GTP and ADP within their respective binding sites in the catalytic cleft of GDH is proposed and explained on the basis of a proposed three-dimensional schematic model structure derived from the bacterial enzyme.  (+info)

Subunit interactions in the clathrin-coated vesicle vacuolar (H(+))-ATPase complex. (10/275)

The vacuolar (H(+))-ATPases (or V-ATPases) are structurally related to the F(1)F(0) ATP synthases of mitochondria, chloroplasts and bacteria, being composed of a peripheral (V(1)) and an integral (V(0)) domain. To further investigate the arrangement of subunits in the V-ATPase complex, covalent cross-linking has been carried out on the V-ATPase from clathrin-coated vesicles using three different cross-linking reagents. Cross-linked products were identified by molecular weight and by Western blot analysis using polyclonal antibodies raised against individual V-ATPase subunits. In the intact V(1)V(0) complex, evidence for cross-linking of subunits C and E, D and F, as well as E and G by disuccinimidyl glutarate was obtained, while in the free V(1) domain, cross-linking of subunits H and E was also observed. Subunits C and E as well as D and E could be cross-linked by 1-ethyl-3-(dimethylaminopropyl)carbodiimide, while subunits a and E could be cross-linked by 4-(N-maleimido)benzophenone. It was further demonstrated that it is possible to treat the V-ATPase with potassium iodide and MgATP in such a way that while subunits A, B, and H are nearly quantitatively removed, significant amounts of subunits C, D, E, and F remain attached to the membrane, suggesting that one or more of these latter subunits are in contact with the V(0) domain. In addition, treatment of the V-ATPase with cystine, which modifies Cys-254 of the catalytic A subunit, results in dissociation of subunit H, suggesting communication between the catalytic nucleotide binding site and subunit H. Finally, the stoichiometry of subunits F, G, and H were determined by quantitative amino acid analysis. Based on these and previous observations, a new structural model of the V-ATPase from clathrin-coated vesicles is proposed.  (+info)

COMT inhibition with tolcapone does not affect carbidopa pharmacokinetics in parkinsonian patients in levodopa/carbidopa (Sinemet). (11/275)

AIMS: Tolcapone is a novel catechol-O-methyltransferase (COMT) inhibitor used as an adjunct to levodopa/carbidopa or levodopa/benserazide therapy to improve treatment of Parkinson's disease. The aim of the current study was to investigate the potential effect of tolcapone on the pharmacokinetics of carbidopa. METHODS: This was an open-label study in 12 parkinsonian patients receiving optimal levodopa/carbidopa therapy and tolcapone 200 mg three times daily for 6 weeks. Blood samples were taken at baseline (i.e. before the first tolcapone intake) and after 1-2 weeks and 6 weeks so that carbidopa pharmacokinetics before and during tolcapone treatment could be assessed. RESULTS: No changes in any pharmacokinetic parameters of carbidopa were observed. The mean AUC(0,tau) and Cmax values at baseline were 0.39 microg ml-1 h and 0. 14 microg ml-1, respectively. During tolcapone treatment these values were on average 0.35 microg ml-1 h (AUC(0,tau), week 1-2), 0. 34 microg ml-1 h (AUC(0,tau), week 6 and 0.13 microg ml-1 (Cmax, weeks 1-2 and 6). tmax remained unchanged (approx. 2 h). CONCLUSIONS: These results indicate that tolcapone does not affect carbidopa elimination and that no interaction of any clinical relevance occurs between tolcapone and carbidopa.  (+info)

GC-MS determination of flunitrazepam and its major metabolite in whole blood and plasma. (12/275)

A gas chromatography-mass spectrometry method was developed for the analysis of flunitrazepam (FN) and its major metabolite, 7-amino-flunitrazepam (7-amino-FN), in both plasma and whole blood. The method was based on acid hydrolysis of the samples after dilution with HPLC water followed by extraction and derivatization (heptafluorobutyrate) of the resulting benzophenones. Analysis of plasma and whole blood samples from subjects administered 2-mg doses of FN showed that FN was only detected in whole blood (LOD 5 ng/mL) and not in plasma. However, 7-amino-FN was detected in both plasma and whole blood, although the levels were much higher in plasma. 7-Amino-FN was detected for the entire period of specimen collection (12 h), but FN was only detected in whole blood for 4 h after ingestion with peak levels after 1 h.  (+info)

A comparison of 11C-labeled L-DOPA and L-fluorodopa as positron emission tomography tracers for the presynaptic dopaminergic system. (13/275)

11C-labeled 3,4-Dihydroxy-phenyl-L-alanine (L-DOPA) and L-fluorodopa were used as tracers for the functional state of the presynaptic dopamine system in anesthetized monkeys with positron emission tomography. The radiotracer disposition in brain tissue and plasma were studied and effects induced by pharmacologic challenges were evaluated. 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (6R-BH4) increased the striatal influx rate constant, e.g., striatal K(i) for L-[beta-11C]DOPA, but it induced no effect on the K(i)-value using L-[beta-11C]-6-fluorodopa. Studies of radiolabeled tracer and metabolites in plasma showed substantial differences between the two tracers. At baseline conditions, 60% unchanged L-[beta-11C]DOPA was detected in plasma 50 minutes after tracer injection and the 3-O-methylated fraction accounted for 25% of total radioactivity. For L-[beta-11C]-6-fluorodopa, the relation was inverse; about 25% unchanged tracer and 60% 3-O-methyl metabolite were present in plasma after 50 minutes. A site-specific 11C-labeling in the carboxylic position in the molecules revealed a significant specific retention of radioactivity in striatum with L-[car-boxy-11C]-6-fluorodopa but not with L-[carboxy-11C]DOPA. The 3-O-methyl metabolite of L-DOPA is known to pass the blood-brain barrier and may interfere with the calculation of the K(i)value using a brain reference region. Thus, extensive 3-O-methylation in circulation of the fluorinated analog could obscure the detectability of potential functional change in striatal K(i) of the tracer when using a reference tissue model for calculation.  (+info)

Metabolism and excretion of tolcapone, a novel inhibitor of catechol-O-methyltransferase. (14/275)

AIMS: To investigate the rate of excretion and routes of metabolism of tolcapone, a novel inhibitor of catechol-O-methyltransferase (COMT). METHODS: Six healthy male volunteers were given 200 mg [14C]-tolcapone (approximately 50 muCi) orally. To assess excretion balance and to identify metabolites, urine and faeces were collected before administration and until radioactivity fell below 75 d min-1 ml-1 (urine) and 100 d min-1 mg-1 (faeces). Blood samples were collected frequently before and after administration to determine plasma radioactivity, to identify tolcapone metabolites and to measure plasma tolcapone and its methylated derivative 3-O-methyltolcapone (3-OMT). RESULTS: The mean proportion of the dose excreted in urine was 57.3% and in faeces 40.5%. Excretion was almost complete (more than 95%) in all participants after 9 days. The major early metabolite present in plasma was the 3-O-beta, d-glucuronide conjugate, which was detectable within 2 h after dosing. The major late metabolite in plasma was 3-OMT. The 3-O-beta, d-glucuronide was also the most abundant metabolite in urine and faeces, accounting for 27% and 33%, respectively, of the total radioactivity excreted by these routes and for 26% of the original dose. Reduction of the nitro moiety yields an amine derivative, detected in both urine and faeces, with subsequent modifications, such as acetylation of the amine group and conjugation with glucuronic acid or sulphate, or both. Oxidative reactions due to cytochrome P450 enzymes are of small significance, as is 3-O-methylation by COMT. CONCLUSIONS: Tolcapone is almost completely metabolized and excreted in urine and faeces (only 0.5% of tolcapone was excreted unchanged); glucuronidation is the most important route of metabolism. The relatively long duration of excretion is caused by the long half-life of 3-OMT.  (+info)

Absorption of sunscreens across human skin: an evaluation of commercial products for children and adults. (15/275)

AIMS: Topical sunscreens are routinely applied to the skin by a large percentage of the population. This study assessed the extent of absorption of a number of common chemical sunscreen agents into and through human skin following application of commercially available products. METHODS: Sunscreen products were applied to excised human epidermis in Franz diffusion cells with the amount penetrating into and across the epidermis assessed by h.p.l.c. for 8 h following application. RESULTS: All sunscreen agents investigated penetrated into the skin (0.25 g m-2 or 14% of applied dose), but only benzophenone-3 passed through the skin in significant amounts (0.08 g m-2 or 10% of the applied dose). With one exception, suncreen agents in corresponding products marketed for adults and children had similar skin penetration profiles. CONCLUSIONS: Whilst limited absorption across the skin was observed for the majority of the sunscreens tested, benzophenone-3 demonstrated sufficiently high penetration to warrant further investigation of its continued application.  (+info)

Population pharmacokinetics of tolcapone in parkinsonian patients in dose finding studies. (16/275)

AIMS: To use pharmacostatistical models to characterize tolcapone's pharmacokinetics in parkinsonian patients, and to identify any demographic subpopulations which may be at risk of either under- or over-exposure to this catechol-O-methyltransferase (COMT) inhibitor. METHODS: Four hundred and twelve patients participated in three multicentre, parallel, double-blind, placebo-controlled, dose-finding studies and received either placebo or tolcapone (50, 200 or 400 mg three times daily) in addition to levodopa/decarboxylase inhibitor therapy. Sparse blood samples were obtained from 275 patients for tolcapone assay and the concentrations (1414 in total) were analysed using the NONMEM program. RESULTS: The pharmacokinetic model which best described the data was a two-compartment open model with first-order absorption and possibly a lag-time. Tolcapone pharmacokinetics were shown to be stable, with no systematic trend between 2 and 6 weeks of treatment. The absorption of the drug was shown to be rapid and concomitant food intake had only a minor effect on the relative bioavailability (10-20% reduction compared with fasting). The overall clearance of tolcapone could be estimated with good precision (approximately 4. 5-5 l h-1 ), and none of the investigated covariates (e.g. sex, age, body weight) had any clinically significant influence on this parameter. The volume of distribution showed relatively high variability and was calculated to be approximately 30 l, leading to an estimated half-life in patients of approximately 5-8 h. CONCLUSIONS: Using sparse concentrations and mixed effect-effects modelling analysis it is possible to describe the pharmacokinetics of tolcapone in parkinsonian populations. The parameter estimates obtained agreed with those obtained from conventional pharmacokinetic studies and no subpopulation was shown to be at risk of either under- or over-exposure to tolcapone.  (+info)