Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. (57/275)

The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene affects activity of the enzyme and influences performance and efficiency of the prefrontal cortex (PFC); however, although catecholaminergic neurotransmission is implicated, the underlying mechanisms remain elusive because studies of the role of COMT in PFC function are sparse. This study investigated the effect of tolcapone, a brain-penetrant COMT inhibitor, on a rat model of attentional set shifting, which is dependent on catecholamines and the medial PFC (mPFC). Additionally, we investigated the effect of tolcapone on extracellular catecholamines in the mPFC using microdialysis in awake rats. Tolcapone significantly and specifically improved extradimensional (ED) set shifting. Tolcapone did not affect basal extracellular catecholamines, but significantly potentiated the increase in extracellular dopamine (DA) elicited by either local administration of the depolarizing agent potassium chloride or systemic administration of the antipsychotic agent clozapine. Although extracellular norepinephrine (NE) was also elevated by local depolarization and clozapine, the increase was not enhanced by tolcapone. We conclude that COMT activity specifically affects ED set shifting and is a significant modulator of mPFC DA but not NE under conditions of increased catecholaminergic transmission. These data suggest that the links between COMT activity and PFC function can be modeled in rats and may be specifically mediated by DA. The interaction between clozapine and tolcapone may have implications for the treatment of schizophrenia.  (+info)

Systemic absorption of the sunscreens benzophenone-3, octyl-methoxycinnamate, and 3-(4-methyl-benzylidene) camphor after whole-body topical application and reproductive hormone levels in humans. (58/275)

Recent in vitro and animal studies have reported estrogen-like activity of chemicals used in sunscreen preparations. We investigated whether the three sunscreens benzophenone-3 (BP-3), octyl-methoxycinnamate (OMC), and 3-(4-methylbenzylidene) camphor (4-MBC) were absorbed and influenced endogenous reproductive hormone levels in humans after topical application. In this 2-wk single-blinded study 32 healthy volunteers, 15 young males and 17 postmenopausal females, were assigned to daily whole-body topical application of 2 mg per cm(2) of basic cream formulation without (week 1) and with (week 2) the three sunscreens at 10% (wt/wt) of each. Maximum plasma concentrations were 200 ng per mL BP-3, 20 ng per mL 4-MBC, and 10 ng per mL OMC for females and 300 ng per mL BP-3, 20 ng per mL 4-MBC, and 20 ng per mL OMC for men. All three sunscreens were detectable in urine. The reproductive hormones FSH, LH were unchanged but minor differences in testosterone levels were observed between the 2 wk. A minor difference in serum estradiol and inhibin B levels were observed in men only. These differences in hormone levels were not related to sunscreen exposure.  (+info)

Novel prenyl-linked benzophenone substrate analogues of mycobacterial mannosyltransferases. (59/275)

PPM (polyprenol monophosphomannose) has been shown to act as a glycosyl donor in the biosynthesis of the Man (mannose)-rich mycobacterial lipoglycans LM (lipomannan) and LAM (lipoarabinomannan). The Mycobacterium tuberculosis PPM synthase (Mt-Ppm1) catalyses the transfer of Man from GDP-Man to polyprenyl phosphates. The resulting PPM then serves as a donor of Man residues leading to the formation of an alpha(1-->6)LM intermediate through a PPM-dependent alpha(1-->6)mannosyltransferase. In the present study, we prepared a series of ten novel prenyl-related photoactivatable probes based on benzophenone with lipophilic spacers replacing several internal isoprene units. These probes were excellent substrates for the recombinant PPM synthase Mt-Ppm1/D2 and, on photoactivation, several inhibited its activity in vitro. The protection of the PPM synthase activity by a 'natural' C(75) polyprenyl acceptor during phototreatment is consistent with probe-mediated photoinhibition occurring via specific covalent modification of the enzyme active site. In addition, the unique mannosylated derivatives of the photoreactive probes were all donors of Man residues, through a PPM-dependent mycobacterial alpha(1-->6)mannosyltransferase, to a synthetic Manp(1-->6)-Manp-O-C(10:1) disaccharide acceptor (where Manp stands for mannopyranose). Photoactivation of probe 7 led to striking-specific inhibition of the M. smegmatis alpha(1-->6)mannosyltransferase. The present study represents the first application of photoreactive probes to the study of mycobacterial glycosyltransferases involved in LM and LAM biosynthesis. These preliminary findings suggest that the probes will prove useful in investigating the polyprenyl-dependent steps of the complex biosynthetic pathways to the mycobacterial lipoglycans, aiding in the identification of novel glycosyltransferases.  (+info)

Phytochemicals inhibit catechol-O-methyltransferase activity in cytosolic fractions from healthy human mammary tissues: implications for catechol estrogen-induced DNA damage. (60/275)

Phytochemicals are natural dietary constituents of fruits and vegetables. Some of these phytochemicals are known to affect estrogen-metabolizing enzymes. In breast tissue, estradiol can be metabolized to the catechol estrogens 2- and 4-hydroxyestradiol (2-OHE(2) and 4-OHE(2)). Catechol estrogens are suspected carcinogens potentially involved in the etiology of breast cancer. Catechol-O-methyltransferase (COMT) converts the catechol estrogens to their inactive methoxy derivatives (2-MeOE(2) and 4-MeOE(2)). In this study we investigated the effects of several phytochemicals on COMT activity in cytosolic fractions of seven healthy human mammary tissues from reduction mammoplasty. Large interindividual variations were observed in the constitutive levels of COMT activity. However, in all cytosol samples the catalytic efficiency of COMT was greater for 2-MeOE(2) formation than for 4-MeOE(2) formation. The known COMT inhibitor Ro 41-0960 and several phytochemicals with a catechol structure (quercetin, catechin, and (-)-epicatechin) concentration-dependently inhibited COMT activity, while phytochemicals without a catechol structure (genistein, chrysin, and flavone) showed no effect up to 30 microM. Distinct interindividual variations were observed in sensitivity toward COMT inhibition among the various tissue samples, as was shown by the range in IC(50) values for Ro 41-0960 (5-42 nM). The toxicological relevance of COMT inhibition and the effect of reduced inactivation of catechol estrogens was studied by determining the amount of catechol estrogen-induced DNA damage in MCF-7 cells using the comet assay. Catechol estrogens alone caused no increase of DNA damage compared with control treated cells. However, both Ro 41-0960 and quercetin caused a decrease of methoxy estradiol formation and an increase of catechol estrogen-induced DNA damage in MCF-7 cells. This suggests that phytochemicals with a catechol structure have the potential to reduce COMT activity in mammary tissues and may consequently reduce the inactivation of potentially mutagenic estradiol metabolites and increase the chance of DNA damage.  (+info)

A new class of peroxisome proliferator-activated receptor agonists with a novel binding epitope shows antidiabetic effects. (61/275)

The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the NR1 subfamily of nuclear receptors. The PPARs play key roles in the control of glucose and lipid homeostasis, and the synthetic isoform-specific PPAR agonists are used clinically to improve insulin sensitivity and to lower serum triglyceride levels. All of the previously reported PPAR agonists form the same characteristic interactions with the receptor, which have been postulated to be important for the induction of agonistic activity. Here we describe a new class of PPARalpha/gamma modulators, the 5-substituted 2-benzoylaminobenzoic acids (2-BABAs). As shown by x-ray crystallography, the representative compounds BVT.13, BVT.762, and BVT.763, utilize a novel binding epitope and lack the agonist-characteristic interactions. Despite this, some compounds within the 2-BABA family are potent agonists in a cell-based reporter gene assay. Furthermore, BVT.13 displays antidiabetic effects in ob/ob mice. We concluded that the 2-BABA binding mode can be used to design isoform-specific PPAR modulators with biological activity in vivo.  (+info)

Crystal structures of bovine odorant-binding protein in complex with odorant molecules. (62/275)

The structure of bovine odorant-binding protein (bOBP) revealed a striking feature of a dimer formed by domain swapping [Tegoni, M., Ramoni, R., Bignetti, E., Spinelli, S. & Cambillau, C. (1996) Nat. Struct. Biol.3, 863-867; Bianchet, M.A., Bains, G., Pelosi, P., Pevsner, J., Snyder, S.H., Monaco, H.L. & Amzel, L.M. (1996) Nat. Struct. Biol.3, 934-939] and the presence of a naturally occuring ligand [Ramoni, R., Vincent, F., Grolli, S., Conti, V., Malosse, C., Boyer, F.D., Nagnan-Le Meillour, P., Spinelli, S., Cambillau, C. & Tegoni, M. (2001) J. Biol. Chem.276, 7150-7155]. These features led us to investigate the binding of odorant molecules with bOBP in solution and in the crystal. The behavior of odorant molecules in bOBP resembles that observed with porcine OBP (pOBP), although the latter is monomeric and devoid of ligand when purified. The odorant molecules presented K(d) values with bOBP in the micromolar range. Most of the X-ray structures revealed that odorant molecules interact with a common set of residues forming the cavity wall and do not exhibit specific interactions. Depending on the ligand and on the monomer (A or B), a single residue--Phe89--presents alternate conformations and might control cross-talking between the subunits. Crystal data on both pOBP and bOBP, in contrast with binding and spectroscopic studies on rat OBP in solution, reveal an absence of significant conformational changes involving protein loops or backbone. Thus, the role of OBP in signal triggering remains unresolved.  (+info)

Evidence that assembly of an active gamma-secretase complex occurs in the early compartments of the secretory pathway. (63/275)

The gamma-secretase complex, consisting of presenilins (PS), nicastrin (NCT), APH-1, and PEN-2, catalyzes the intramembranous proteolysis of truncated beta-amyloid precursor protein (APP) and Notch derivatives to generate the APP intracellular domain (AICD) and Notch intracellular domain (NICD), respectively. To examine the intracellular sites in which active gamma-secretase resides, we expressed NCT variants harboring either an endoplasmic reticulum (ER) retention signal (NCT-ER) or a trans-Golgi network (TGN) targeting motif (NCT-TGN) along with PS1, APH-1, and PEN-2 and examined gamma-secretase activity in these settings. In cells expressing NCT-ER and the other components, PS1 fragments hyperaccumulated, but AICD levels were not elevated. On the other hand, upon coexpression of an ER-retained APP variant or a constitutionally active Notch mutant, NDeltaE, we observed enhanced production of AICD or NICD, respectively, in cells expressing NCT-ER. Moreover, we show that membranes from cells expressing NCT-ER, NCT-TGN, or NCT-WT contain identical levels of PS1 derivatives that can be photoaffinity cross-linked to a biotinylated, benzophenone-derivatized gamma-secretase inhibitor. Finally, our cell-free gamma-secretase assays revealed nearly equivalent gamma-secretase activities in cells expressing PS1, APH-1, PEN-2, and either NCT-WT or NCT-ER. Taken together, we interpret these findings as suggesting that active gamma-secretase complex is generated in the early compartments of the secretory pathway but that these complexes are transported to late compartments in which substrates are encountered and subsequently processed within respective transmembrane segments.  (+info)

Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. (64/275)

Tau protein is the major component of the intraneuronal filamentous inclusions that constitute defining neuropathological characteristics of Alzheimer's disease and other tauopathies. The discovery of tau gene mutations in familial forms of frontotemporal dementia has established that dysfunction of the tau protein is sufficient to cause neurodegeneration and dementia. Here we have tested 42 compounds belonging to nine different chemical classes for their ability to inhibit heparin-induced assembly of tau into filaments in vitro. Several phenothiazines (methylene blue, azure A, azure B, and quinacrine mustard), polyphenols (myricetin, epicatechin 5-gallate, gossypetin, and 2,3,4,2',4'-pentahydroxybenzophenone), and the porphyrin ferric dehydroporphyrin IX inhibited tau filament formation with IC(50) values in the low micromolar range as assessed by thioflavin S fluorescence, electron microscopy, and Sarkosyl insolubility. Disassembly of tau filaments was observed in the presence of the porphyrin phthalocyanine. Compounds that inhibited tau filament assembly were also found to inhibit the formation of Abeta fibrils. Biochemical analysis revealed the formation of soluble oligomeric tau in the presence of the inhibitory compounds, suggesting that this may be the mechanism by which tau filament formation is inhibited. The compounds investigated did not affect the ability of tau to interact with microtubules. Identification of small molecule inhibitors of heparin-induced assembly of tau will form a starting point for the development of mechanism-based therapies for the tauopathies.  (+info)