Transient, phorbol ester-induced DOC2-Munc13 interactions in vivo. (17/443)

Munc13-1 and DOC2 have been implicated in the regulation of exocytosis. Here we demonstrate in vivo that these two proteins undergo a transient phorbol ester-mediated and protein kinase C-independent interaction, resulting in the translocation of DOC2 from a vesicular localization to the plasma membrane. The translocation of DOC2 is dependent upon the DOC2 Munc interacting domain that binds specifically to Munc13-1, whereas the association of DOC2 with intracellular membranes is dependent on its C2 domains. This is the first direct in vivo demonstration of a protein-protein interaction between two presynaptic proteins and may represent a molecular basis for phorbol ester-dependent enhancement of exocytosis.  (+info)

Oxidized low-density lipoprotein enhances myogenic tone in the rabbit posterior cerebral artery through the release of endothelin-1. (18/443)

BACKGROUND AND PURPOSE: Cerebral arteries develop stretch-induced myogenic tone, which plays an important role in the regulation of blood flow to the brain. Although the effect of oxidized LDL (Ox-LDL) on many aspects of the vascular endothelial and smooth muscle cell function have been extensively investigated, its influence on myogenic activity has not been studied. METHODS: The effect of Ox-LDL on the myogenic tone that develops in the perfused rabbit posterior cerebral artery at intramural pressures between 40 and 90 mm Hg was examined. RESULTS: Ox-LDL (10 microg/mL) significantly enhanced myogenic tone by 21.4+/-6.1% to 28.5+/-1.8% at 60 to 90 mm Hg pressure (P<0.05) but had no influence on norepinephrine- (0.5 to 1 micromol/L) and KCl (20 mmol/L)-induced constriction. Ox-LDL was effective whether the artery was exposed to it from the intraluminal or the extraluminal surface. Lysophosphatidylcholine (10 micromol/L), a lipid component of Ox-LDL, had an equivalent potentiating effect. Native LDL (100 microg/mL) was inactive. The myogenic tone-potentiating effect of Ox-LDL was abolished by endothelium removal but was not influenced by the NO synthase inhibitor N(G)-nitro-L-nitro-arginine methyl ester (50 micromol/L). This effect was reversed by the endothelin-1 (ET-1) antagonist BQ-123 (1 micromol/L). This concentration blocked 1 to 3 nmol/L ET-1-induced constriction without altering constriction induced by 40 mmol/L KCl. The potentiating effect was suppressed by the specific protein kinase C inhibitor chelerythrine (1 micromol/L). CONCLUSIONS: Ox-LDL enhances myogenic tone through the release of ET-1 from the endothelium of the rabbit posterior cerebral artery.  (+info)

Diacylglycerol delays pH(i) overshoot after reperfusion and attenuates contracture in isolated, paced myocytes. (19/443)

Although protein kinase C (PKC) plays a pivotal role in ischemic preconditioning, it is not clear what the end effector is that protects the myocardium. In isolated, paced (1.25 Hz, 36-37 degrees C) adult rat cardiomyocytes, the effects of PKC preactivation by diacylglycerol on cell motion, intracellular Ca(2+) concentration ([Ca(2+)](i); indo 1), and intracellular pH (pH(i); seminaphthorhodafluor-1) during simulated ischemia-reperfusion (I/R) were investigated. The degree of reperfusion-induced contracture was significantly attenuated in the myocytes pretreated with 10 microM 1, 2-dioctanoyl-sn-glycerol (DOG; n = 19) compared with the untreated myocytes (n = 23, P < 0.02). There were no differences in twitch amplitude, end-diastolic [Ca(2+)](i), or peak-systolic [Ca(2+)](i) during I/R between the DOG-pretreated and untreated myocytes. Although there were no differences in pH(i) during ischemia, the pH(i) overshoot during reperfusion was significantly delayed in the DOG-pretreated myocytes compared with the untreated myocytes (n = 17 for each, P < 0.01). Chelerythrine completely abolished the favorable effects of DOG on the reperfusion-induced contracture and the pH(i) overshoot. These data suggest that diacylglycerol attenuates I/R injury in isolated, paced cardiomyocytes, which may be related to the slower pH(i) overshoot during reperfusion.  (+info)

PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits. (20/443)

A conscious rabbit model was used to study the effect of ischemic preconditioning (PC) on stress-activated kinases [c-Jun NH(2)-terminal kinases (JNKs) and p38 mitogen-activated protein kinase (MAPK)] in an environment free of surgical trauma and attending external stress. Ischemic PC (6 cycles of 4-min ischemia/4-min reperfusion) induced significant activation of protein kinase C (PKC)-epsilon in the particulate fraction, which was associated with activation of p46 JNK in the nuclear fraction and p54 JNK in the cytosolic fraction; all of these changes were completely abolised by the PKC inhibitor chelerythrine. Selective enhancement of PKC-epsilon activity in adult rabbit cardiac myocytes resulted in enhanced activity of p46/p54 JNKs, providing direct in vitro evidence that PKC-epsilon is coupled to both kinases. Studies in rabbits showed that the activation of p46 JNK occurred during ischemia, whereas that of p54 JNK occurred after reperfusion. A single 4-min period of ischemia induced a robust activation of the p38 MAPK cascade, which, however, was attenuated after 5 min of reperfusion and disappeared after six cycles of 4-min ischemia/reperfusion. Overexpression of PKC-epsilon in cardiac myocytes failed to increase the p38 MAPK activity. These results demonstrate that ischemic PC activates p46 and p54 JNKs via a PKC-epsilon-dependent signaling pathway and that there are important differences between p46 and p54 JNKs with respect to the subcellular compartment (cytosolic vs. nuclear) and the mechanism (ischemia vs. reperfusion) of their activation after ischemic PC.  (+info)

Activation of Ras by phorbol esters in cardiac myocytes. Role of guanine nucleotide exchange factors. (21/443)

The relationship between protein kinase C (PKC) activation and Ras function was investigated in cardiac cells. Ras function was required for ERK activation by phorbol esters in cardiac myocytes, but not in cardiac fibroblasts. Accordingly, treatment with phorbol esters resulted in GTP loading of Ras in cardiac myocytes, but not fibroblasts. Ras activation by phorbol esters was abolished by a PKC specific inhibitor, but was insensitive to tyrosine kinase inhibitors. Ras activation was mediated by stimulation of guanine nucleotide exchange. These results suggest the existence of a novel pathway for Ras activation, specific to cardiac myocytes, with implications for myocardial hypertrophy.  (+info)

Comparison of in vitro activities of camptothecin and nitidine derivatives against fungal and cancer cells. (22/443)

The activities of a series of camptothecin and nitidine derivatives that might interact with topoisomerase I were compared against yeast and cancer cell lines. Our findings reveal that structural modifications to camptothecin derivatives have profound effects on the topoisomerase I-drug poison complex in cells. Although the water-soluble anticancer agents topotecan and irinotecan are less active than the original structure, camptothecin, other derivatives or analogs with substitutions that increase compound solubility have also increased antifungal activities. In fact, a water-soluble prodrug appears to penetrate into the cell and release its active form; the resulting effect in complex with Cryptococcus neoformans topoisomerase I is a fungicidal response and also potent antitumor activity. Some of the compounds that are not toxic to wild-type yeast cells are extremely toxic to the yeast cells when the C. neoformans topoisomerase I target is overexpressed. With the known antifungal mechanism of a camptothecin-topoisomerase I complex as a cellular poison, these findings indicate that drug entry may be extremely important for antifungal activity. Nitidine chloride exhibits antifungal activity against yeast cells through a mechanism(s) other than topoisomerase I and appears to be less active than camptothecin analogs against tumor cells. Finally, some camptothecin analogs exhibit synergistic antifungal activity against yeast cells in combination with amphotericin B in vitro. Our results suggest that camptothecin and/or nitidine derivatives can exhibit potent antifungal activity and that the activities of camptothecin derivatives with existing antifungal drugs may be synergistic against pathogenic fungi. These new compounds, which exhibit potent antitumor activities, will likely require further structural changes to find more selective activity against fungal versus mammalian cells to hold promise as a new class of antifungal agents.  (+info)

Nitroglycerin induces late preconditioning against myocardial stunning via a PKC-dependent pathway. (23/443)

Previous studies have shown that administration of nitric oxide (NO) donors induces a delayed cardioprotective effect indistinguishable from the late phase of ischemic preconditioning (PC). However, the ability of clinically relevant NO donors to elicit this phenomenon has not been evaluated. In this study we tested whether an NO-releasing agent that is nitroglycerin (NTG), which is widely used clinically, can mimic the late phase of ischemic PC. Four groups of conscious rabbits underwent six cycles of 4-min occlusion (O)/4-min reperfusion (R) for 3 consecutive days (days 1, 2, and 3). The severity of myocardial stunning was assessed as the total deficit of systolic wall thickening (WTh) after the last O/R cycle. In the control group (group I, n = 6), the total deficit of WTh was reduced by 50% and 51% on days 2 and 3 vs. day 1, respectively, indicating late PC against stunning. Pretreatment with NTG (2 microg. kg(-1). min(-1) iv over 1 h) on day 0 (group II, n = 6) was as effective as ischemic PC in mitigating myocardial stunning 24 h later (day 1); on days 2 and 3, no further reduction of stunning was seen. Coadministration of the PKC inhibitor chelerythrine (5 mg/kg) with NTG (group III, n = 6) completely abrogated the NTG-induced protection. Pretreatment with chelerythrine alone (group IV, n = 5) did not alter stunning. These results demonstrate that a relatively brief infusion of NTG induces a robust protective effect against stunning 24 h later via a protein kinase C (PKC)-dependent signaling mechanism. The magnitude of NTG-induced protection is equivalent to that observed during the late phase of ischemic PC. Late PC induced by brief treatment with NTG could be a useful therapeutic strategy for myocardial protection in patients with ischemic heart disease.  (+info)

Hormone-stimulated Ca2+ transport in rabbit kidney: multiple sites of inhibition by exogenous ATP. (24/443)

Exogenous ATP markedly reduced 1-desamino-8-D-arginine vasopressin (dDAVP)-stimulated Ca2+ transport and cAMP accumulation in primary cultures of rabbit connecting tubule and cortical collecting duct cells. Similarly, ATP inhibited the stimulatory effect of 8-bromo-cAMP. At first sight, this is in agreement with the "classic" concept that dDAVP exerts its stimulatory effect via cAMP. However, dDAVP-stimulated Ca2+ transport was markedly reduced by the protein kinase C (PKC) inhibitor chelerythrine, reported previously to inhibit the cAMP-independent pathway responsible for parathyroid hormone-, [Arg8]vasopressin-, PGE2-, and adenosine-stimulated Ca2+ transport. Chelerythrine also inhibited the increase in Ca2+ transport evoked by the cAMP-independent A1 receptor agonist N6-cyclopentyladenosine (CPA). Downregulation of phorbol ester-sensitive PKC isoforms by chronic phorbol ester treatment has been shown before to be without effect on hormone-stimulated Ca2+ transport, indicating that the chelerythrine-inhibitable pathway consists of a phorbol ester-insensitive PKC isoform. Here, this maneuver did not affect ATP inhibition of dDAVP-stimulated Ca2+ transport and cAMP formation, while abolishing ATP inhibition of CPA-stimulated Ca2+ transport. These findings show that ATP acts via 1) a phorbol ester-sensitive PKC isoform to inhibit hormonal stimulation of Ca2+ transport at the level of the chelerythrine-inhibitable pathway involving a phorbol ester-insensitive PKC isoform and 2) a phorbol ester-insensitive mechanism to inhibit V2 receptor-mediated concomitant activation of this pathway and adenylyl cyclase.  (+info)