Imidazenil prevention of alprazolam-induced acquisition deficit in patas monkeys is devoid of tolerance. (65/1844)

The partial allosteric modulators (PAMs) of gamma-aminobutyric acid-gated Cl(-) current intensities at gamma-aminobutyric acid type A receptors have high affinity but low intrinsic efficacy on benzodiazepine recognition sites. Unlike the full allosteric modulators (FAM), like alprazolam, triazolam, and diazepam, PAMs are virtually devoid of unwanted side effects, including tolerance. Imidazenil (IMD) is a PAM that elicits potent anxiolytic and anticonvulsant actions in rodents and nonhuman primates and retains its anticonvulsant and anxiolytic effects, even in rodents that are tolerant to FAMs. IMD antagonizes the side effects of FAMs in rodents and nonhuman primates. Using patas monkeys and a multiple schedule with repeated acquisition and performance of chain responses, we report that IMD administration for 17 days antagonized without showing tolerance ALP-induced disruption of acquisition.  (+info)

Functional GluR6 kainate receptors in the striatum: indirect downregulation of synaptic transmission. (66/1844)

Kainate receptors (KARs) are abundantly expressed in the basal ganglia, but their function in synaptic transmission has not been established. In the present study, we show that the GluR6 subunit of KARs is expressed in both substance P- and enkephalin-containing GABAergic projection neurons of the mouse striatum. Using whole-cell voltage-clamp recordings in brain slices, we demonstrate the presence of functional KARs in the dorsal striatum activated by low concentrations of the AMPA/KAR agonist domoate in wild-type but not GluR6-deficient mice. Despite the abundance of KARs, we found no evidence for synaptic activation of these receptors after single or repetitive stimulation of glutamatergic afferents. Domoate induces a transient increase in the frequency of spontaneous IPSCs of small amplitude and a sustained depression of large IPSCs evoked by minimal electrical stimulation within the striatum in wild-type mice but not in GluR6-deficient mice. This depressant effect is inhibited in presence of adenosine A(2A) receptor antagonists, ZM-241385 and SCH-58261. These data strongly suggest that, in striatal neurons, KARs depress GABAergic synaptic transmission indirectly via release of adenosine acting on A(2A) receptors.  (+info)

Comparison of the effects of clozapine, risperidone, and olanzapine on ketamine-induced alterations in regional brain metabolism. (67/1844)

The ability of subanesthetic doses of N-methyl-D-aspartate (NMDA) antagonists to induce positive, negative, and cognitive schizophrenia-like symptoms suggests that reduced NMDA receptor function may contribute to the pathophysiology of schizophrenia. An increasing body of evidence indicates that antipsychotic drugs, especially those with "atypical" properties, can antagonize the effects of NMDA antagonists in a variety of experimental paradigms. We demonstrated previously that clozapine, the prototype of atypical antipsychotics, but not haloperidol, the typical antipsychotic, blocked ketamine-induced alterations in brain metabolism. In this study, effects of clozapine were compared with two of the newer atypical antipsychotic drugs, risperidone and olanzapine, on ketamine-induced alterations in regional [(14)C]2-deoxyglucose (2-DG) uptake. A subanesthetic dose of ketamine (25 mg/kg) induced robust increases in 2-DG uptake in limbic cortical regions, hippocampal formation, nucleus accumbens, and basolateral amygdala. Pretreatment of rats with risperidone (0.3 mg/kg) before ketamine administration did not alter the effects of ketamine. These data suggest that novel pharmacological properties may contribute to the effects of clozapine in this model, in addition to the well characterized actions at D(2) and 5HT(2A) receptors. In contrast to the results with risperidone, olanzapine blocked ketamine-induced increases in 2-DG uptake. However, a higher dose of olanzapine (10 mg/kg) was required to completely block the effects of ketamine than would be expected if D(2) and 5HT(2) receptor blocking properties of the drug were solely responsible for its action. The results suggest that the ketamine challenge 2-DG paradigm may be a useful model to identify antipsychotic drugs with atypical characteristics and to explore mechanisms of atypical antipsychotic action.  (+info)

Substance abuse and the kidney. (68/1844)

Substance abuse has been increasing steadily in the UK and some other countries. Recent evidence suggests more than 40% of young people have tried illicit drugs at some time. There are numerous medical consequences to recreational drug use, and a physician should always consider substance abuse in any unexplained illness. The renal complications of drug abuse are also becoming more frequent, and may encompass a spectrum of glomerular, interstitial and vascular diseases. Although some substances are directly nephrotoxic, a number of other mechanisms are also involved. These effects are often chronic and irreversible, but occasionally acute with possible recovery. The rapid growth of illicit drug use is clearly a major public health problem. We review the commonly used substances of abuse and their associations with renal disease.  (+info)

Genetic inactivation of the Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. (69/1844)

Anxiety is a common psychiatric illness often treated by benzodiazepines (BZs). BZs, such as Valium, bind to the alpha subunit of the pentameric GABA(A) receptor and increase inhibition in the CNS. There is considerable evidence for abnormal GABA(A) receptor function in anxiety, and a significant proportion of anxiety patients has a reduced sensitivity to BZs. Here, we show that serotonin(1A) (5-HT(1A)) receptor knock-out mice display BZ-resistant anxiety. Consistent with this finding, binding of both BZ and non-BZ GABA(A) receptor ligands were reduced and GABAergic inhibition was impaired in mutant mice. These changes were reflected by abnormal alpha subunit expression in the amygdala and hippocampus, two important limbic regions involved in fear and anxiety. These data suggest a pathological pathway, initiated by a 5-HT(1A) receptor deficit, leading to abnormalities in GABA(A) receptor composition and level, which in turn result in BZ-insensitivity and anxiety. This model mechanistically links together the 5-HT and GABA systems, which both have been implicated in anxiety. A related mechanism may underlie reduced BZ sensitivity in certain forms of anxiety.  (+info)

Addiction: Part I. Benzodiazepines--side effects, abuse risk and alternatives. (70/1844)

Benzodiazepines are widely prescribed for a variety of conditions, particularly anxiety and insomnia. They are relatively safe and, with overdose, rarely result in death. However, used chronically, benzodiazepines can be addicting. These agents are often taken in combination with other drugs of abuse by patients with addiction disorders. In such patients, alternatives to benzodiazepines may be preferable and may include antidepressants, anticonvulsants, buspirone, antihypertensive agents and the newer neuroleptic medications. Caution must be used when prescribing benzodiazepines to patients with a current or remote history of substance abuse.  (+info)

Identification of benzodiazepine binding site residues in the gamma2 subunit of the gamma-aminobutyric acid(A) receptor. (71/1844)

gamma-Aminobutyric acid(A) receptor gamma-subunits are important for benzodiazepine (BZD) binding and modulation of the gamma-aminobutyric acid-mediated Cl(-) current. Previously, by using gamma2/alpha1 chimeric subunits, we identified two domains of the gamma2-subunit, Lys-41-Trp-82 and Arg-114-Asp-161, that are, in conjunction, necessary and sufficient for high-affinity BZD binding. In this study, we generated additional gamma2/alpha1 chimeric subunits and gamma2 point mutants to identify specific residues within the gamma2 Lys-41-Trp-82 region that contribute to BZD binding. Mutant gamma2 and gamma2/alpha1 chimeric subunits were expressed with wild-type alpha1 and beta2 subunits in HEK 293 cells, and the binding of several BZDs was measured. We present evidence that the gamma2 region Met-57-Ile-62 is important for flunitrazepam binding and that, in particular, gamma2 Met-57 and gamma2 Tyr-58 are essential determinants for conferring high-affinity binding. Furthermore, we identify an additional residue, gamma2 Ala-79, that not only is important for high-affinity binding by flunitrazepam (a strong positive modulator) but also plays a crucial role in the binding of the imidazobenzodiazepines Ro15-1788 (a zero modulator) and Ro15-4513 (a weak negative modulator) in the BZD binding pocket. Results from site-directed mutagenesis of gamma2 Ala-79 suggest that this residue may be part of a microdomain within the BZD binding site that is important for binding imidazobenzodiazepines. This separation of drug-specific microdomains for competitive BZD ligands lends insight into the structural determinants governing the divergent effects of these compounds.  (+info)

Allosteric modulators affect the efficacy of partial agonists for recombinant GABA(A) receptors. (72/1844)

Different alpha subunits of human gamma-aminobutyric acid type A (GABA(A)) receptors were transiently expressed together with beta(3) and gamma(2) subunits in Xenopus oocytes to examine the interactions of various GABA(A) agonists and representative allosteric modulators. Chloride currents elicited by agonists were measured using two electrode voltage clamp electrophysiology. Where compounds behaved as full agonists, i.e. GABA on all subtypes and 4,5,6, 7-tetrahydroisoxazolo [5,4-c]pyridin-3-ol (THIP) on alpha2beta(3)gamma(2) GABA(A) receptors, agonist concentration-response curves were shifted to the left by the benzodiazepine full agonist chlordiazepoxide and the anticonvulsant loreclezole, or to the right by the inverse agonist 6, 7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methyl ester (DMCM), with no effect on the maximal currents (I(max)). In contrast, maximal responses for different partial GABA(A) agonists on all benzodiazepine-sensitive alpha(x)beta(3)gamma(2) GABA(A) receptors were enhanced by chlordiazepoxide. I(max) values for piperidine-4-sulphonic acid (P4S) on alpha(1)beta(3)gamma(2), THIP on alpha(3)beta(3)gamma(2), and 5-(4-piperidyl)isothiazol-3-ol (thio-4-PIOL) on alpha(2)beta(3)gamma(2) and alpha(5)beta(3)gamma(2) GABA(A) receptors were increased by chlordiazepoxide, while that for P4S on alpha(1)beta(3)gamma(2) receptors was decreased by DMCM. The I(max) values for partial agonists were also enhanced by pentobarbitone, the neurosteroid allopregnanolone and loreclezole irrespective of receptor subtype or the nature of the partial agonist. In the light of models of ligand-gated ion channel receptor activation we suggest two possible mechanisms of action for the effects of allosteric modulators on partial agonist receptor activation: either selective modulation of agonist affinity for the open/closed state, or direct modulation of the gating process itself.  (+info)