Pressor and mesenteric arterial hyporesponsiveness to angiotensin II is an early event in haemorrhagic hypotension in anaesthetised rats. (41/2141)

OBJECTIVE: Vascular responsiveness to vasoconstrictors is known to be attenuated in haemorrhagic shock. In this study we assessed the temporal development and the underlying mechanisms of haemorrhage-induced vascular hyporeactivity to pressor agents. METHODS: In phenobarbital-anaesthetised rats hypotension was induced by graded haemorrhage (8 ml blood total). Sham-manipulated rats served as controls. Blood flow (BF) was recorded with ultrasonic transit time flow probes. RESULTS: Following haemorrhage mean arterial pressure (MAP) fell by 25-45 mm Hg and was accompanied by a reduction in mesenteric BF without any alteration of mesenteric vascular conductance (VC). While pressor responses to arginine vasopressin remained unaltered, hyporesponsiveness to phenylephrine (10 nmol kg-1) developed 120-180 min after hypotension had been induced. Pressor and mesenteric constrictor responses to angiotensin II (30 pmol kg-1) became significantly blunted as early as 60 min post haemorrhage. The hypotensive effect of an angiotensin1 receptor antagonist, telmisartan (1 mg kg-1), was likewise blunted 3 h after haemorrhage. Pretreatment with the cyclooxygenase inhibitor indomethacin (10 mg kg-1) exaggerated the hypotensive reaction to haemorrhage but did not prevent the development of angiotensin II hyporesponsiveness. In contrast, the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (10 mg kg-1), as investigated 3 h post haemorrhage, restored the systemic pressor responses to angiotensin II and phenylephrine as well as the mesenteric constrictor responses to phenylephrine to normal level and diminished the mesenteric hyporesponsiveness to angiotensin II. Glibenclamide (20 mg kg-1), an inhibitor of ATP-sensitive K- channels given 180 min post haemorrhage, partially reversed haemorrhage-induced hypotension but did not modify angiotensin II hyporesponsiveness. CONCLUSION: Systemic pressor responsiveness and mesenteric arterial reactivity to endogenous and exogenous angiotensin II is selectively impaired at an early stage of haemorrhagic hypotension. This phenomenon partially involves NO and is not related to ATP-sensitive K+ channels.  (+info)

Regulation of vascular endothelial growth factor expression in human keratinocytes by retinoids. (42/2141)

Vascular endothelial growth factor (VEGF) is overexpressed in hyperproliferative diseases, such as psoriasis and cancers, which are characterized by increased angiogenesis. Experimentally, VEGF overexpression can be induced by the treatment of cell cultures and biological tissues with phorbol esters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA). Using normal human keratinocytes in conventional cultures and skin grafted onto nude mice in vivo, we show that retinoids can inhibit TPA-mediated VEGF gene induction at the transcriptional level. Because retinoids are biologically active either by interacting with the nuclear retinoic acid receptors or by interfering with the activator protein 1 (AP1) transcription factor, we studied the effect of the retinoic acid derivative CD 2409, which exhibits strong anti-AP1 activity but does not bind to the known retinoic acid receptors in vitro. The results demonstrate that the inhibition of VEGF expression by retinoids only depends on their anti-AP1 activity and does not require gene transactivation via retinoic acid response elements. Because the VEGF promoter contains four potential AP1 binding sites, we used different promoter constructs to identify the functional site responsible for TPA induction and retinoid inhibition. This site turned out to be localized at position -621 of the 5' flanking region of the VEGF gene.  (+info)

Purification and characterization of a novel extracellular lipase catalyzing hydrolysis of oleyl benzoate from Acinetobacter nov. sp. strain KM109. (43/2141)

A new lipase (OBase) which efficiently hydrolyzes oleyl benzoate (OB) was found in the culture supernatant of Acinetobacter nov. sp. strain KM109, a new isolate growing in a minimum medium containing OB as the sole carbon source. OBase was purified to homogeneity with 213-fold purification and 0.8% yield. The molecular weight was estimated to be 62,000 +/- 1,000 by SDS-PAGE under denatured-reduced conditions and to be 50,000 +/- 1,000 by gel-filtration HPLC under native conditions; these findings indicate that OBase is a monomeric enzyme. The optimum temperature and pH of OBase were about 45 degrees C and pH 8. Temperature and pH stabilities were at or lower than 35 degrees C and in a range of pH 6-8, respectively. Purified OBase preferentially hydrolyzed p-nitrophenyl benzoate (pNPB) over p-nitrophenyl acetate (pNPA) or p-nitrophenyl caproate (pNPC) [pNPB/pNPA = 20 and pNPB/pNPC = 5.4], indicating that OBase has a high affinity for benzoyl esters. Partial amino-acid sequences of OBase fragments obtained after lysyl endopeptidase treatment showed no similarity with known proteins.  (+info)

Downregulation of angiotensin II type 1 receptor by all-trans retinoic acid in vascular smooth muscle cells. (44/2141)

All-trans retinoic acid (atRA) is a biologically active metabolite of vitamin A that plays an important role in cell differentiation and proliferation. Although neointimal formation after balloon injury of rat carotid artery is inhibited by atRA, the mechanisms are not clearly understood. Because the renin-angiotensin system is one of the crucial components of atherosclerosis, we examined the effects of atRA on the expression of angiotensin II type 1 receptor (AT(1)-R) in vascular smooth muscle cells. atRA (1 micromol/L) decreased the AT(1)-R mRNA level by 50% after 24 hours; AT(1)-R number was also reduced to the same extent after 48 hours. atRA markedly suppressed promoter activity of the AT(1)-R promoter-luciferase construct, but AT(1)-R mRNA stability was not affected. Cycloheximide blocked the atRA-induced decrease in AT(1)-R mRNA expression, suggesting that this process requires de novo protein synthesis. Simultaneous treatment with an agonist (Ro40-6055) specific for retinoic acid receptor (RAR) and an agonist (Ro25-7836) specific for retinoid X receptor (RXR) suppressed the AT(1)-R mRNA expression comparable to that with treatment with atRA, suggesting that the RAR/RXR heterodimer mediates the effect of atRA in AT(1)-R downregulation. These results suggest that atRA suppressed AT(1)-R mRNA transcription through new protein synthesis induced by RAR/RXR-dependent transcription. This study provides novel insight into a role of atRA as an important molecule that regulates AT(1)-R gene expression and provides possible mechanisms for the suppression of neointimal formation by atRA.  (+info)

Exogenous nitric oxide inhibits apoptosis in guinea pig gastric mucous cells. (45/2141)

BACKGROUND: Increased nitric oxide (NO) synthase activity and enhanced apoptosis are features of gastric mucosa infected with Helicobacter pylori and a causative relation has been suggested. However, although NO can promote apoptosis, its actions vary with cell type. AIMS: To determine whether exogenous NO, derived from an NO donor, might promote or counteract apoptosis in gastric mucous epithelial cells. METHODS: Primary cultures of guinea pig gastric mucosal cells were exposed to the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) for 24 hours. Apoptosis was detected from nuclear staining with Hoechst 33258, in situ nick end labelling of DNA, and the presence of DNA "ladders" in cell extracts. Cyclic GMP content and caspase activity were determined by immunoassay and fluorimetric assay respectively. RESULTS: SNAP 1 mM did not alter the small proportion of cells on the culture plate (3-6%) which exhibited features of apoptosis. However, SNAP produced an inhibition of apoptosis, and of caspase 3 like activity, when enhanced by 25 microM N-hexanoyl-D-sphingosine (C(6)-ceramide), or by detachment of cells from the culture plate. The guanylate cyclase inhibitor, 1H-1, 2, 4-oxadiazole-4, 3-a-quinoxaline-1-one (ODQ), prevented the stimulation of cyclic GMP by SNAP, but not the anti- apoptotic effects of the NO donor. The cyclic GMP analogues 8-bromo-cyclic GMP and 8-(4-chlorophenylthio) guanosine-3',5'- cyclic monophosphate did not significantly inhibit apoptosis in the mucosal cells. CONCLUSIONS: Exogenous NO inhibited apoptosis in guinea pig gastric mucous cells by a mechanism which did not involve elevation of cyclic GMP. NO, if produced from NO synthase during infection with H pylori, may therefore counter the proapoptotic effects of this pathogen.  (+info)

Functional domains of the TOL plasmid transcription factor XylS. (46/2141)

The alkylbenzoate degradation genes of Pseudomonas putida TOL plasmid are positively regulated by XylS, an AraC family protein, in a benzoate-dependent manner. In this study, we used deletion mutants and hybrid proteins to identify which parts of XylS are responsible for the DNA binding, transcriptional activation, and benzoate inducibility. We found that a 112-residue C-terminal fragment of XylS binds specifically to the Pm operator in vitro, protects this sequence from DNase I digestion identically to the wild-type (wt) protein, and activates the Pm promoter in vivo. When overexpressed, that C-terminal fragment could activate transcription as efficiently as wt XylS. All the truncations, which incorporated these 112 C-terminal residues, were able to activate transcription at least to some extent when overproduced. Intactness of the 210-residue N-terminal portion was found to be necessary for benzoate responsiveness of XylS. Deletions in the N-terminal and central regions seriously reduced the activity of XylS and caused the loss of effector control, whereas insertions into the putative interdomain region did not change the basic features of the XylS protein. Our results confirm that XylS consists of two parts which probably interact with each other. The C-terminal domain carries DNA-binding and transcriptional activation abilities, while the N-terminal region carries effector-binding and regulatory functions.  (+info)

The role of endothelium-derived nitric oxide in relaxations to levcromakalim in the rat aorta. (47/2141)

The present study was designed to examine the role of basally released nitric oxide in relaxations to an ATP-sensitive K+ channel opener. Whether relaxations to levcromakalim are modulated by endothelial removal or the inhibitors of vasodilator effects of endothelium-derived nitric oxide, were investigated in the rat aorta. During contractions to phenylephrine (3 x 10(-7) to 10(-6) M), levcromakalim (10(-8) to 10(-5) M) or a nitric oxide donor, 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC-7, 10(-9) to 10(-5) M), was added in a cumulative fashion. Relaxations to levcromakalim (10(-8) to 10(-5) M) were significantly reduced by the endothelium-removal. In aortas with endothelium, relaxations in response to levcromakalim were decreased by selective inhibitors of nitric oxide synthase (N(G)-nitro-L-arginine methyl ester, 10(-4) M) and soluble guanylate cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one; ODQ, 10(-5) M) and a scavenger of nitric oxide (carboxy-PTIO, 10(-3) M). Relaxations to levcromakalim in aortas treated with these inhibitors are comparable to those seen in aortas without endothelium. KCl (30 mM) and an ATP-sensitive K+ channel inhibitor, glibenclamide (10(-5) M), abolished relaxations to levcromakalim in aortas with or without endothelium, whereas glibenclamide did not alter relaxations to NOC-7 (10(-9) to 10(-5) M) in aortas without endothelium. These results suggest that in rat aortas, inhibition of vasodilator effects of basally released nitric oxide can reduce relaxations via ATP-sensitive K+ channels, although these channels do not mediate relaxations to exogenously applied nitric oxide.  (+info)

Volume control in sickle cells is facilitated by the novel anion conductance inhibitor NS1652. (48/2141)

A low cation conductance and a high anion conductance are characteristic of normal erythrocytes. In sickle cell anemia, the polymerization of hemoglobin S (HbS) under conditions of low oxygen tension is preceded by an increase in cation conductance. This increase in conductance is mediated in part through Ca(++)-activated K(+) channels. A net efflux of potassium chloride (KCl) leads to a decrease in intracellular volume, which in turn increases the rate of HbS polymerization. Treatments minimizing the passive transport of ions and solvent to prevent such volume depletion might include inhibitors targeting either the Ca(++)-activated K(+) channel or the anion conductance. NS1652 is an anion conductance inhibitor that has recently been developed. In vitro application of this compound lowers the net KCl loss from deoxygenated sickle cells from about 12 mmol/L cells/h to about 4 mmol/L cells/h, a value similar to that observed in oxygenated cells. Experiments performed in mice demonstrate that NS1652 is well tolerated and decreases red cell anion conductance in vivo. (Blood. 2000;95:1842-1848)  (+info)