Targeting sigma receptor-binding benzamides as in vivo diagnostic and therapeutic agents for human prostate tumors. (33/4453)

Sigma receptors are known to be expressed in a variety of human tumor cells, including breast, neural, and melanoma tumors. A very high density (1.0-1.5 million receptors/cell) of sigma receptors was also reported in a human androgen-dependent prostate tumor cell line (LNCaP). In this study, we show that a very high density of sigma receptors is also expressed in an androgen-independent human prostate tumor cell line (DU-145). Pharmacological binding studies using the sigma-1-selective ligand [3H](+)-pentazocine showed a high-affinity binding (Kd = 5.80 nM, Bmax = 1800 fmol/mg protein). Similarly, binding studies with [3H]1,3-di-o-tolylguanidine in the presence of dextrallorphan also showed a high-affinity binding (Kd = 15.71 nM, Bmax = 1930 fmol/mg protein). Radioiodinated benzamide N-[2-(1'-piperidinyl)ethyl]-3-[125I]iodo-4-methoxybenzamide ([125I]PIMBA) was also shown to bind DU-145 cells in a dose-dependent manner. Three different radioiodinated benzamides, [125I]PIMBA, 4-[125I]iodo-N-[2-(1'-piperidinyl)ethyl]benzamide, and 2-[125I]-N-(N-benzylpiperidin-4-yl)-2-iodobenzamide, were screened for their potential to image human prostate tumors in nude mice bearing human prostate cells (DU-145) xenografts. All three compounds showed a fast clearance from the blood pool and a high uptake and retention in the tumor. Therapeutic potential of nonradioactive PIMBA was studied using in vitro colonogenic assays. A dose-dependent inhibition of cell colony formation was found in two different human prostate cells. These results demonstrate the potential use of sigma receptor binding ligands in non-invasive diagnostic imaging of prostate cancer and its treatment.  (+info)

Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents. (34/4453)

1. Hypoglycaemia-inducing sulphonylureas, such as glibenclamide, inhibit cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels. In search of modulators of CFTR, we investigated the effects of the non-sulphonylurea hypoglycaemic agents meglitinide, repaglinide, and mitiglinide (KAD-1229) on CFTR Cl- channels in excised inside-out membrane patches from C127 cells expressing wild-type human CFTR. 2. When added to the intracellular solution, meglitinide and mitiglinide inhibited CFTR Cl- currents with half-maximal concentrations of 164+/-19 microM and 148+/-36 microM, respectively. However, repaglinide only weakly inhibited CFTR Cl- currents. 3. To understand better how non-sulphonylurea hypoglycaemic agents inhibit CFTR, we studied single channels. Channel blockade by both meglitinide and mitiglinide was characterized by flickery closures and a significant decrease in open probability (Po). In contrast, repaglinide was without effect on either channel gating or Po, but caused a small decrease in single-channel current amplitude. 4. Analysis of the dwell time distributions of single channels indicated that both meglitinide and mitiglinide greatly decreased the open time of CFTR. Mitiglinide-induced channel closures were about 3-fold longer than those of meglitinide. 5. Inhibition of CFTR by meglitinide and mitiglinide was voltage-dependent: at positive voltages channel blockade was relieved. 6. The data demonstrate that non-sulphonylurea hypoglycaemic agents inhibit CFTR. This indicates that these agents have a wider specificity of action than previously recognized. Like glibenclamide, non-sulphonylurea hypoglycaemic agents may inhibit CFTR by occluding the channel pore and preventing Cl- permeation.  (+info)

Selective V2-receptor vasopressin antagonism decreases urinary aquaporin-2 excretion in patients with chronic heart failure. (35/4453)

Aquaporin-2 (AQP-2), a water channel located on the apical membrane of collecting duct cells, regulates water reabsorption under the control of vasopressin (AVP). Using an antibody directed to human AQP-2, a quantitative Western blot analysis was performed to determine the collecting duct responsiveness to an oral, nonpeptide, V2 receptor antagonist (VPA-985) in patients with chronic NYHA II and III heart failure. Standards were derived by conjugating the immunizing peptide to maleimide-activated bovine serum albumin and a standard curve was generated for each blot. Quantification of baseline steady-state AQP-2 excretion was done by collecting urine on the day before study drug administration. The next day patients received either placebo or VPA-985 at one of four different doses and urine was collected every 2 h. Thereafter, urinary AQP-2 excretion was calculated as a ratio of the urine flow and was expressed in pmol/h. During baseline, steady-state excretion did not change significantly (T0-T2, 458 +/- 44; T2-T4, 443 +/- 35; T4-T6, 422 +/- 35; T6-T8, 401 +/- 30). Compared to placebo, urinary AQP-2 excretion decreased significantly and in all groups in a dose-dependent manner during VPA-985 administration. The most impressive decrease was observed in the 250-mg group (T0-T2, 89 +/- 5; T2-T4, 50 +/- 18; T4-T6, 43 +/- 22; T6-T8, 42 +/- 23; P < 0.001 during each period compared with baseline and placebo results). VPA-985 significantly increased solute-free water clearance and urine output and significantly decreased urinary osmolality. Urinary AQP-2 excretion correlated best with solute-free water clearance during T0-T2 and T2-T4 collection, but a correlation with urinary osmolality and urinary output was also found during these periods. In conclusion, AQP-2 urinary excretion, as measured by quantitative Western analysis, is a sensitive biologic marker to assess the short-term responsiveness of the collecting duct to a V2 receptor AVP antagonist in chronic heart failure.  (+info)

Inhibition of PARS attenuates endotoxin-induced dysfunction of pulmonary vasorelaxation. (36/4453)

Endotoxin (Etx) causes excessive activation of the nuclear repair enzyme poly(ADP-ribose) synthase (PARS), which depletes cellular energy stores and leads to vascular dysfunction. We hypothesized that PARS inhibition would attenuate injury to mechanisms of pulmonary vasorelaxation in acute lung injury. The purpose of this study was to determine the effect of in vivo PARS inhibition on Etx-induced dysfunction of pulmonary vasorelaxation. Rats received intraperitoneal saline or Etx (Salmonella typhimurium; 20 mg/kg) and one of the PARS inhibitors, 3-aminobenzamide (3-AB; 10 mg/kg) or nicotinamide (Nic; 200 mg/kg), 90 min later. After 6 h, concentration-response curves were determined in isolated pulmonary arterial rings. Etx impaired endothelium-dependent (response to ACh and calcium ionophore) and -independent (sodium nitroprusside) cGMP-mediated vasorelaxation. 3-AB and Nic attenuated Etx-induced impairment of endothelium-dependent and -independent pulmonary vasorelaxation. 3-AB and Nic had no effect on Etx-induced increases in lung myeloperoxidase activity and edema. Lung ATP decreased after Etx but was maintained by 3-AB and Nic. Pulmonary arterial PARS activity increased fivefold after Etx, which 3-AB and Nic prevented. The beneficial effects were not observed with benzoic acid, a structural analog of 3-AB that does not inhibit PARS. Our results suggest that PARS inhibition with 3-AB or Nic improves pulmonary vasorelaxation and preserves lung ATP levels in acute lung injury.  (+info)

5-hydroxytryptamine receptors mediating contraction in human small muscular pulmonary arteries: importance of the 5-HT1B receptor. (37/4453)

1. The 5-hydroxytryptamine (5-HT) receptors mediating vasoconstriction in isolated human small muscular pulmonary arteries (SMPAs) were determined using techniques of wire myography and reverse transcription-polymerase chain reaction (RT - PCR). 2. The agonists 5-HT, 5-carboxamidotryptamine (5-CT, unselective for 5-HT1 receptors) and sumatriptan (selective for 5-HT1B/D receptors) all caused contraction and were equipotent (pEC50s: 7.0+/-0.2, 7.1+/-0.3 and 6.7+/-0.1, respectively) suggesting the presence of a 5-HT1 receptor. 3. Ketanserin (5-HT2A-selective antagonist, 0.1 microM) inhibited 5-HT-induced contractions only at non-physiological/pathological concentrations of 5-HT (>0.1 microM) whilst GR55562 (5-HT1B/1D-selective antagonist, 1 microM) inhibited 5-HT-induced contractions at all concentrations of 5-HT (estimated pKB=7.7+/-0.2). SB-224289 (5-HT1B-selective antagonist, 0.2 microM) inhibited sumatriptan-induced contractions (estimated pKB=8.4+/-0.1) whilst these were unaffected by the 5-HT1D-selective antagonist BRL15572 (0.5 microM) suggesting that the 5-HT1B receptor mediates vasoconstriction in this vessel. 4. RT - PCR confirmed the presence of substantial amounts of mRNA for the 5-HT2A and 5-HT1B receptor subtypes in these arteries whilst only trace amounts of 5-HT1D receptor message were evident. 5. These findings suggest that a heterogeneous population of 5-HT2A and 5-HT1B receptors co-exist in human small muscular pulmonary arteries but that the 5-HT1B receptor mediates 5-HT-induced vasoconstriction at physiological and pathophysiological concentrations of 5-HT. These results have important implications for the treatment of pulmonary hypertension in which the 5-HT1B receptor may provide a novel and potentially important therapeutic target.  (+info)

Antitumor efficacy of a novel class of non-thiol-containing peptidomimetic inhibitors of farnesyltransferase and geranylgeranyltransferase I: combination therapy with the cytotoxic agents cisplatin, Taxol, and gemcitabine. (38/4453)

Ras malignant transformation requires posttranslational modification by farnesyltransferase (FTase). Here we report on the design and antitumor activity, in monotherapy as well as in combination therapy with cytotoxic agents, of a novel class of non-thiol-containing peptidomimetic inhibitors of FTase and the closely related family member geranylgeranyltransferase I (GGTase I). The non-thiol-containing FTI-2148 is highly selective for FTase (IC50, 1.4 nM) over GGTase I (IC50, 1700 nM), whereas GGTI-2154 is highly selective for GGTase I (21 nM) over FTase (IC50, 5600 nM). In whole cells, the corresponding methylester prodrug FTI-2153 is >3000-fold more potent at inhibiting H-Ras (IC50, 10 nM) than Rap1A processing, whereas GGTI-2166 is over 100-fold more selective at inhibiting Rap1A (IC50, 300 nM) over H-Ras processing. Furthermore, FTI-2153 was highly effective at suppressing oncogenic H-Ras constitutive activation of mitogen-activated protein kinase and human tumor growth in soft agar. FTI-2148 suppressed the growth of the human lung adenocarcinoma A-549 cells in nude mice by 33, 67, and 91% in a dose-dependent manner. Combination therapy of FTI-2148 with either cisplatin, gemcitabine, or Taxol resulted in a greater antitumor efficacy than monotherapy. GGTI-2154 in similar antitumor efficacy experiments is less potent than FTI-2148 and inhibits tumor growth by 9, 27, and 46%. Combination therapy of GGTI-2154 with cisplatin, gemcitabine, or Taxol is also more effective. Finally, FTI-2148 and GGTI-2154 are 30- and 33-fold more selective and 30- and 16-fold more potent in whole cells than our previously reported thiol-containing FTI-276 and GGTI-297, respectively. Thus, our results demonstrate that this highly potent and selective novel class of non-thiol-containing peptidomimetics inhibits human tumor growth in whole animals and that combination therapy with cytotoxic agents is more beneficial than monotherapy.  (+info)

BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. (39/4453)

The BCR/ABL oncogene causes chronic myelogenous leukemia (CML), a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and granulocyte lineage cells. The SH2-containing inositol-5-phosphatase SHIP is a 145-kDa protein which has been shown to regulate hematopoiesis in mice. Targeted disruption of the murine SHIP gene results in a myeloproliferative syndrome characterized by a dramatic increase in numbers of granulocyte-macrophage progenitor cells in the marrow and spleen. Also, hematopoietic progenitor cells from SHIP(-/-) mice are hyperresponsive to certain hematopoietic growth factors, a phenotype very similar to the effects of BCR/ABL in murine cells. In a series of BCR/ABL-transformed hematopoietic cell lines, Philadelphia chromosome (Ph)-positive cell lines, and primary cells from patients with CML, the expression of SHIP was found to be absent or substantially reduced compared to untransformed cell lines or leukemia cells lacking BCR/ABL. Ba/F3 cells in which expression of BCR/ABL was under the control of a tetracycline-inducible promoter showed rapid loss of p145 SHIP, coincident with induction of BCR/ABL expression. Also, an ABL-specific tyrosine kinase inhibitor, CGP57148B (STI571), rapidly caused reexpression of SHIP, indicating that BCR/ABL directly, but reversibly, regulates the expression of SHIP protein. The estimated half-life of SHIP protein was reduced from 18 h to less than 3 h. However, SHIP mRNA also decreased in response to BCR/ABL, suggesting that SHIP protein levels could be affected by more than one mechanism. Reexpression of SHIP in BCR/ABL-transformed Ba/F3 cells altered the biological behavior of cells in culture. The reduction of SHIP due to BCR/ABL is likely to directly contribute to the pathogenesis of CML.  (+info)

Combination of the novel farnesyltransferase inhibitor RPR130401 and the geranylgeranyltransferase-1 inhibitor GGTI-298 disrupts MAP kinase activation and G(1)-S transition in Ki-Ras-overexpressing transformed adrenocortical cells. (40/4453)

To test the Kirsten-Ras (Ki-Ras) alternative prenylation hypothesis in malignant transformation, we used a novel farnesyltransferase inhibitor competitive to farnesyl-pyrophosphate, RPR130401, and a CaaX peptidomimetic geranylgeranyltransferase-1 inhibitor GGTI-298. In Ki-Ras-overexpressing transformed adrenocortical cells, RPR130401 at 1-10 microM inhibited very efficiently the [(3)H]farnesyl but not [(3)H]geranylgeranyl transfer to Ras. However, proliferation of these cells was only slightly sensitive to RPR130401 (IC(50)=30 microM). GGTI-298 inhibited the growth of these cells with an IC(50) of 11 microM but cell lysis was observed at 15 microM. The combination of 10 microM RPR130401 and 10 microM GGTI-298 inhibited efficiently (80%) cell proliferation. These combined inhibitors but not each inhibitor alone blocked the cell cycle in G(0)/G(1) and disrupted MAP kinase activation. Thus, combination of two inhibitors, at non-cytotoxic concentrations, acting on the farnesyl-pyrophosphate binding site of the farnesyltransferase and the CaaX binding site of the geranylgeranyltransferase-1 respectively is an efficient strategy for disrupting Ki-Ras tumorigenic cell proliferation.  (+info)