Respiratory action of capsaicin microinjected into the nucleus of the solitary tract: involvement of vanilloid and tachykinin receptors. (17/4453)

1. The respiratory response to microinjection of capsaicin into the commissural nucleus of the solitary tract (cNTS) of urethane-anaesthetized rats was investigated in the absence and presence of the competitive vanilloid (capsaicin) antagonist, capsazepine, and selective tachykinin NK1, NK2 and NK3 antagonists (RP 67580, SR 48968 and SR 142801, respectively). 2. Microinjection of capsaicin reduced respiratory frequency but not tidal volume (VT), leading to an overall reduction in minute ventilation (VE). The effect was dose-dependent between 0.5 and 2 nmol capsaicin. Doses greater than 2 nmol produced apnoea. Tachyphylaxis was observed following repeated injection of capsaicin (1 nmol, 30 min apart). 3. Capsazepine (1 nmol) had no effect on frequency or VT when injected alone but completely blocked the respiratory response to capsaicin (1 nmol). 4. RP 67580 (1 but not 5 nmol) alone depressed frequency and VT slightly. Moreover, RP 67580 appeared to potentiate the bradypnoeic effect of capsaicin. In contrast, SR 48968 and SR 142801 (1 and 5 nmol) alone had no significant effect on respiration. However, both agents significantly attenuated the reduction in frequency produced by capsaicin. 5. In conclusion, microinjection of capsaicin into the cNTS decreases overall ventilation, primarily by reducing frequency. The action of capsaicin appears from the data to be mediated by vanilloid receptors since it is blocked by the competitive vanilloid antagonist capsazepine and is subject to tachyphylaxis. However, since NK2 (SR 48968) and NK3 (SR 142801) receptor antagonists block the actions of capsaicin, we propose that capsaicin acts also by releasing tachykinins from central afferent terminals in the cNTS.  (+info)

Humanization of mouse 5-hydroxytryptamine1B receptor gene by homologous recombination: in vitro and in vivo characterization. (18/4453)

We replaced the coding region of the murine 5-hydroxytryptamine (5-HT)1B receptor by the human 5-HT1B receptor using homologous recombination in embryonic stem cells and generated and characterized homozygous transgenic mice that express only the human (h) 5-HT1B receptor. The distribution patterns of h5-HT1B and murine (m) 5-HT1B receptor mRNA and binding sites in brain sections of transgenic and wild-type mice were identical as measured by in situ hybridization histochemistry and radioligand receptor autoradiography. When measured in parallel under identical conditions, the h5-HT1B receptor expressed in mouse brain had the same pharmacological characteristics as that in human brain. Stimulation by 5-HT1B agonists of [35S]guanosine-5'-O-(3-thio)triphosphate binding in brain sections demonstrated the functional coupling of the h5-HT1B receptor to G proteins in mouse brain. In tissue slices from various brain regions, electrically stimulated [3H]5-HT release was not modified by 5-HT1B agonists in tissue from either transgenic and wild-type mice; a 5-HT1B antagonist enhanced electrically stimulated [3H]5-HT release in wild-type mouse brain, but was ineffective in the transgenics. The centrally active 5-HT1A/5-HT1B agonist RU24969 induced hypothermia but did not increase locomotor activity in the transgenic mice. The ineffectiveness of RU24969 in the transgenic mice could be due to the lower affinity of the compound for the h5-HT1B receptor compared with the m5-HT1B receptor. The present study demonstrates a complete replacement of the mouse receptor by its human receptor homolog and a functional coupling to G proteins. However, modulation of [3H]5-HT release could not be shown. Furthermore, behavioral effects were not clearly observed, which may be due to a lack of appropriate tools.  (+info)

Oxidative stress inhibits apoptosis in human lymphoma cells. (19/4453)

Apoptosis and necrosis are two forms of cell death that are induced under different conditions and that differ in morphological and biochemical features. In this report, we show that, in the presence of oxidative stress, human B lymphoma cells are unable to undergo apoptosis and die instead by a form of necrosis. This was established using the chemotherapy drug VP-16 or the calcium ionophore A23187 to induce apoptosis in Burkitt's lymphoma cell lines and by measuring classical markers of apoptotic death, including cell morphology, annexin V binding, DNA ladder formation, and caspase activation. In the presence of relatively low levels of H2O2 (75-100 microM), VP-16 and A23187 were unable to induce apoptosis in these cells. Instead, the cells underwent non-apoptotic cell death with mild cytoplasmic swelling and nuclear shrinkage, similar to the death observed when they were treated with H2O2 alone. We found that H2O2 inhibits apoptosis by depleting the cells of ATP. The effects of H2O2 can be overcome by inhibitors of poly(ADP)-ribosylation, which also preserve cellular ATP levels, and can be mimicked by agents such as oligomycin, which inhibit ATP synthesis. The results show that oxidants can manipulate cell death pathways, diverting the cell away from apoptosis. The potential physiological ramifications of this finding will be discussed.  (+info)

Relevance of aromatic residues in transmembrane segments V to VII for binding of peptide and nonpeptide antagonists to the human tachykinin NK(2) receptor. (20/4453)

We used membranes from Chinese hamster ovary cells stably transfected with the human tachykinin NK(2) receptor, either wild-type or mutated, at four aromatic residues (His(198), Tyr(266), Phe(270), Tyr(289)) located in transmembrane segments V to VII, to assess the role of these residues in the binding of natural tachykinins and peptide and nonpeptide antagonists. Three radioligands, the agonist [(125)I]neurokinin A (NKA), the peptide antagonist [(3)H]MEN 11420, and the nonpeptide antagonist [(3)H]SR 48968 bound to the wild-type receptor with high affinity (K(d) = 2.4 nM, 0.3 nM, and 4.0 nM, respectively). Four of the six mutant receptors tested retained high affinity for at least one of the radioligands. H(198)A mutation abrogated the binding of NKA but not that of MEN 11420 or SR 48968 (K(d) = 4.8 and 11.5 nM, respectively); Y(266)F mutation abrogated the binding of MEN 11420 but not that of NKA or SR 48968 (K(d) = 2.8 nM and 1.2 nM, respectively); F(270)A mutation abrogated the binding of both NKA and MEN 11420 but not that of SR 48968 (K(d) = 1.6 nM); Y(289)F mutation abrogated the binding of SR 48968 but not that of NKA and MEN 11420 (K(d) = 2.0 and 2.9 nM, respectively). Y(266)A and Y(289)A mutations abrogated the binding of all radioligands. Among the unlabeled antagonists, the affinity of the nonpeptide GR 159897, at variance with SR 48968, resulted heavily compromised by H(198)A and Y(266)F mutations; the peptide antagonists R396 and MEN 10376 essentially followed the binding profile of NKA, but R396 showed markedly increased affinity for the Y(289)F mutant receptor. Taken together, these results indicate that different, partially overlapping sets of sites may be involved in the binding of agonists and diverse antagonists to the human tachykinin NK(2) receptor.  (+info)

The effects of moclobemide on the pharmacokinetics of the 5-HT1B/1D agonist rizatriptan in healthy volunteers. (21/4453)

AIMS: The new 5-HT1B/1D agonist rizatriptan (MK-0462) has recently been registered for the treatment of migraine. Its primary route of metabolism is via monoamine oxidase-A (MAO-A). Antidepressants such as the MAO-A inhibitor moclobemide may be used in patients with chronic headache syndromes. Hence, this study aimed to investigate the interactions between rizatriptan and moclobemide. METHODS: In a double-blind, randomized, placebo-controlled, two-period cross-over study 12 healthy, young volunteers (six males, six females) were treated with moclobemide (150 mg twice daily) or placebo for 4 days. On the fourth day, a single dose of rizatriptan (10 mg) was administered, and subsequently blood and urine samples were collected for assay of rizatripan and N-monodesmethyl rizatriptan. Plasma concentrates of 3,4-dihydroxyphenylglycol (DHPG), a marker of MAO-A inhibition, were also assessed. Supine and standing blood pressure were measured regularly. RESULTS: Both treatments were well tolerated. During moclobemide, the increase in supine diastolic blood pressure following rizatriptan administration was augmented. Inhibition of MAO by moclobemide was inferred from a persistent decrease in DHPG level (43% on average). When rizatriptan was coadministered with moclobemide, the area under the plasma drug concentration-time profiles for rizatriptan and its N-monodesmethyl metabolite increased 2.2-fold (90% CI, 1.93-2.47) and 5.3-fold (90% CI, 4.81-5.91), respectively, when compared with placebo. Peak plasma drug concentrations for rizatriptan and its n-monodesmethyl metabolite increased 1.4-fold (90% CI, 1.11-1.80) and 2.6-fold (90% CI, 2.23-3.14), respectively, and half-lives of both were prolonged. CONCLUSIONS: Moclobemide inhibited the metabolism of rizatriptan and its active N-monodesmethyl metabolite through inhibition of MAO-A. Thus, moclobemide may considerably potentiate rizatriptan action. Concurrent administration of moclobemide and rizatriptan is not recommended.  (+info)

Serotonin syndrome caused by overdose with paroxetine and moclobemide. (22/4453)

Well known clinical syndromes can be produced by overdose with more commonly ingested substances such as opiates or tricyclic antidepressants. A case of a much more unusual syndrome presenting to the accident and emergency department resulting from overdose with a combination of tablets is reported. The clinical presentation of serotonin syndrome and its management are described. This resulted from acute ingestion of paroxetine, a selective serotonin reuptake inhibitor, and moclobemide, a monoamine oxidase inhibitor.  (+info)

Paradoxical activation of Raf by a novel Raf inhibitor. (23/4453)

BACKGROUND: Raf is a proto-oncogene that is activated in response to growth factors or phorbol esters, and is thought to activate MAP kinase kinase-1 (MKK1) and hence the classical MAP kinase (MAPK) cascade. RESULTS: The compound ZM 336372 is identified as a potent and specific inhibitor of Raf isoforms in vitro. Paradoxically, exposure of cells to ZM 336372 induces > 100-fold activation of c-Raf (measured in the absence of compound), but without triggering any activation of MKK1 or p42 MAPK/ERK2. The ZM 336372-induced activation of c-Raf occurs without any increase in the GTP-loading of Ras and is not prevented by inhibition of the MAPK cascade, protein kinase C or phosphatidylinositide 3-kinase. ZM 336372 does not prevent growth factor or phorbol ester induced activation of MKK1 or p42 MAPK/ERK2, or reverse the phenotype of Ras- or Raf-transformed cell lines. The only other protein kinase inhibited by ZM 336372 out of 20 tested was SAPK2/p38. Although ZM 336372 is structurally unrelated to SB 203580, a potent inhibitor of SAPK2/p38, the mutation of Thr106-->Met made SAPK2/p38 insensitive to ZM 336372 as well as to SB 203580. CONCLUSIONS: Raf appears to suppress its own activation by a novel feedback loop, such that inhibition is always counterbalanced by reactivation. These observations imply that some agonists reported to trigger the cellular activation of c-Raf might actually be inhibitors of this enzyme, and that compounds which inhibit the kinase activity of Raf might not be useful as anticancer drugs. The binding sites for ZM 336372 and SB 203580 on Raf and SAPK2/p38 are likely to overlap.  (+info)

Role of tachykinin NK2-receptor activation in the allergen-induced late asthmatic reaction, airway hyperreactivity and airway inflammatory cell influx in conscious, unrestrained guinea-pigs. (24/4453)

1. In a guinea-pig model of allergic asthma, we investigated the involvement of the tachykinin NK2 receptors in allergen-induced early (EAR) and late (LAR) asthmatic reactions, airway hyperreactivity (AHR) after these reactions and inflammatory cell influx in the airways, using the selective non-peptide NK2 receptor antagonist SR48968. 2. On two different occasions, separated by a 1 week interval, ovalbumin (OA)-sensitized guinea-pigs inhaled either vehicle (3 min) or SR48968 (100 nM, 3 min) at 30 min before as well as at 5.5 h after OA provocation (between the EAR and LAR) in a random crossover design. 3. SR48968 had no significant effect on the EAR, but significantly attenuated the LAR by 44.2+/-16.4% (P<0.05) compared to saline control. 4. The NK2 receptor antagonist did not affect the OA-induced AHR to histamine after the EAR at 5 h after OA challenge (3.59+/-0.59 fold increase in histamine reactivity vs 3.79+/-0.61 fold increase in the controls, NS), but significantly reduced the AHR after the LAR at 23 h after OA challenge (1.59+/-0.24 fold increase vs 1.93+/-0.15 fold increase, respectively, P<0.05). 5. Bronchoalveolar lavage studies performed at 25 h after the second OA provocation showed that SR48968 significantly inhibited the allergen-induced infiltration of neutrophils (P<0.05) and lymphocytes (P<0.01) in the airways. 6. These results indicate that NK2 receptor activation is importantly involved in the development of the allergen-induced late (but not early) asthmatic reaction and late (but not early) AHR to histamine, and that NK2 receptor-mediated infiltration of neutrophils and lymphocytes in the airways may contribute to these effects.  (+info)