Roles of aldosterone and angiotensin in maturation of sodium appetite in furosemide-treated rats. (73/16705)

When rats are treated with furosemide, there is a rapid natriuresis. However, increased sodium appetite does not occur until some time later. One hypothesis to explain this delay is that increased circulating levels of the hormones of sodium depletion prime or sensitize the brain circuits involved in sodium appetite, perhaps by induction of target gene(s). In the present study, we describe the time course of the temporal maturation of sodium appetite after furosemide treatment and the associated changes in plasma levels of ANG II and aldosterone and in plasma volume. Sodium appetite is modest 3 h after furosemide treatment, is increased after 12 h, and is still larger after 24 h. This pattern is evident with repeated testing. Plasma levels of aldosterone and plasma renin activity are substantially increased 3 h after furosemide treatment, and so the NaCl appetite cannot result simply from progressively increasing levels of these hormones. Furthermore, activation of the subfornical organ and the ventral lamina terminalis, assessed with c-Fos immunocytochemistry, did not differ across these three times. Metyrapone, an inhibitor of adrenal steroid synthesis, was used to examine sodium appetite in the absence of elevations in aldosterone after furosemide treatment. Although metyrapone effectively blocked the increase in aldosterone, it was without effect on the appetite 3 or 24 h after furosemide treatment. Furthermore, elevations of plasma aldosterone by the use of minipumps for several days before furosemide treatment did not prime or potentiate but instead tended to inhibit the induced sodium appetite, despite achieving levels of aldosterone and plasma renin activity typically associated with a robust sodium appetite. Infusions of DOCA gave a similar result. Lastly, minipump infusions of ANG II also did not potentiate sodium appetite. Thus neither addition nor subtraction of these hormones alone influenced sodium appetite under these conditions.  (+info)

Central leptin modulates behavioral and neural responsivity to CCK. (74/16705)

The mechanisms through which leptin, the protein product of the ob gene, affects food intake remain to be determined. To assess whether the actions of leptin depend on modulation of within-meal satiety signals, we measured the effect of third ventricular leptin administration on the satiety actions of CCK. Leptin (10 micrograms) administered 1 h before 30-min access to a liquid diet had no effect on intake when administered alone, but doses of 3.5 or 10 micrograms dose dependently increased the suppression of intake produced by 1 nmol/kg CCK. Examination of patterns of c-Fos activation induced by 3.5 micrograms leptin and 1 nmol/kg CCK revealed that the combination produced significant c-Fos activation within the area postrema and the caudal and medial nucleus of the solitary tract (NST) compared with either leptin or CCK treatments alone. The leptin-CCK combination also resulted in increased c-Fos activation within the paraventricular nucleus of the hypothalamus above that produced by leptin alone. These data suggest that the actions of leptin in food intake are mediated through its ability to modulate responsivity to within-meal satiety signals.  (+info)

Mapping quantitative trait loci for seizure response to a GABAA receptor inverse agonist in mice. (75/16705)

To define the genetic contributions affecting individual differences in seizure threshold, a beta carboline [methyl-beta-carboline-3-carboxylate (beta-CCM)]-induced model of generalized seizures was genetically dissected in mice. beta-CCM is a GABAA receptor inverse agonist and convulsant. By measuring the latency to generalized seizures after beta-CCM administration to A/J and C57BL6/J mice and their progeny, we estimated a heritability of 0.28 +/- 0.10. A genome wide screen in an F2 population of these parental strains (n = 273) mapped quantitative trait loci (QTLs) on proximal chromosome 7 [logarithm of the likelihood for linkage (LOD) = 3.71] and distal chromosome 10 (LOD = 4.29) for seizure susceptibility, explaining approximately 22 and 25%, respectively, of the genetic variance for this seizure trait. The best fitting logistic regression model suggests that the A/J allele at each locus increases the likelihood of seizures approximately threefold. In a subsequent backcross population (n = 223), we mapped QTLs on distal chromosome 4 (LOD = 2.88) and confirmed the distal chromosome 10 QTLs (LOD = 4.36). In the backcross, the C57BL/6J allele of the chromosome 10 QTL decreases the risk of seizures approximately twofold. These QTLs may ultimately lead to the identification of genes influencing individual differences in seizure threshold in mice and the discovery of novel anticonvulsant agents. The colocalization on distal chromosome 10 of a beta-CCM susceptibility QTL and a QTL for open field ambulation and vertical movement suggests the existence of a single, pleiotropic locus, which we have named Exq1.  (+info)

Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. (76/16705)

During slow wave sleep (SWS), traces of neuronal activity patterns from preceding behavior can be observed in rat hippocampus and neocortex. The spontaneous reactivation of these patterns is manifested as the reinstatement of the distribution of pairwise firing-rate correlations within a population of simultaneously recorded neurons. The effects of behavioral state [quiet wakefulness, SWS, and rapid eye movement (REM)], interactions between two successive spatial experiences, and global modulation during 200 Hz electroencephalographic (EEG) "ripples" on pattern reinstatement were studied in CA1 pyramidal cell population recordings. Pairwise firing-rate correlations during often repeated experiences accounted for a significant proportion of the variance in these interactions in subsequent SWS or quiet wakefulness and, to a lesser degree, during SWS before the experience on a given day. The latter effect was absent for novel experiences, suggesting that a persistent memory trace develops with experience. Pattern reinstatement was strongest during sharp wave-ripple oscillations, suggesting that these events may reflect system convergence onto attractor states corresponding to previous experiences. When two different experiences occurred in succession, the statistically independent effects of both were evident in subsequent SWS. Thus, the patterns of neural activity reemerge spontaneously, and in an interleaved manner, and do not necessarily reflect persistence of an active memory (i.e., reverberation). Firing-rate correlations during REM sleep were not related to the preceding familiar experience, possibly as a consequence of trace decay during the intervening SWS. REM episodes also did not detectably influence the correlation structure in subsequent SWS, suggesting a lack of strengthening of memory traces during REM sleep, at least in the case of familiar experiences.  (+info)

Neurotoxicity and behavioral effects of thiram in rats. (77/16705)

Eight of 24 female rats fed 66.9 mg/kg-day of thiram developed neurotoxicity. The neurotoxic effects were characterized by ataxia and paralysis of the hind legs. There were demyelination, degeneration of the axis cylinders, and presence of macrophages in the nerve bundle of the sciatic nerve. Degeneration in the ventral horn of the lower lumbar region of the spinal cord was evidenced by chromatolysis of motorneurons, pyknosis, and satellitosis. During a second experiment, 4 of 24 females fed 65.8 mg/kg--day also developed ataxia and paralysis. An additional 9 females showed clasping of the hind feet when picked up by the tail. Nerve conduction could not be measured for one severely ataxic rat and the electromyogram indicated a loss of motor unit function. Histopathology of this rat, along with the others, suggests the peripheral nerve as the primary site of the lesion. Thiram also caused behavioral changes in apparently normal rats. The walking pattern of the hind legs was altered with decreases in stride width and the angle between contralateral steps. These rats required significantly more shock-motivations and cleared a lower height in a jump/climb ability test. An open-field study indicated that thiram caused hyperactivity in the nonataxic rats of both sexes. Three of 24 rats fed 95.8 mg/kg-day of ferbam also developed ataxia or paralysis.  (+info)

Behavioral testing as a method for assessing risk. (78/16705)

Behavioral effects have been found to result from the prenatal administration of substances known to be teratogenic to the CNS. These effects occur at dose levels lower than those producing gross malformations and when the agent is administered at times other than that optimal for CNS relevant technique for detecting adverse consequences of prenatal exposure to drugs and chemicals. Behavioral testing, however, also appears to have attributes that dictate a thoughtful approach to its role as a method for assessing risk, and additional research is needed to obtain usable techniques. The need for such research is intensified by the present inability to identify potential behavioral teratogens by means other than laboratory investigation.  (+info)

Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. (79/16705)

Delta9-Tetrahydrocannabinol (Delta9-THC), the major psychoactive ingredient in preparations of Cannabis sativa (marijuana, hashish), elicits central nervous system (CNS) responses, including cognitive alterations and euphoria. These responses account for the abuse potential of cannabis, while other effects such as analgesia suggest potential medicinal applications. To study the role of the major known target of cannabinoids in the CNS, the CB1 cannabinoid receptor, we have produced a mouse strain with a disrupted CB1 gene. CB1 knockout mice appeared healthy and fertile, but they had a significantly increased mortality rate. They also displayed reduced locomotor activity, increased ring catalepsy, and hypoalgesia in hotplate and formalin tests. Delta9-THC-induced ring-catalepsy, hypomobility, and hypothermia were completely absent in CB1 mutant mice. In contrast, we still found Delta9-THC-induced analgesia in the tail-flick test and other behavioral (licking of the abdomen) and physiological (diarrhea) responses after Delta9-THC administration. Thus, most, but not all, CNS effects of Delta9-THC are mediated by the CB1 receptor.  (+info)

Altered gene expression in striatal projection neurons in CB1 cannabinoid receptor knockout mice. (80/16705)

The basal ganglia, a brain structure critical for sensorimotor and motivational aspects of behavior, contain very high levels of CB1 cannabinoid receptors. These receptors are activated by endogenous lipophilic ligands, and they are thought to mediate behavioral effects of cannabinoid drugs. To evaluate the role of the endogenous cannabinoid system in the regulation of basal ganglia pathways, we have investigated the effects of targeted deletion of CB1 receptors on gene expression of various neuropeptides and transmitter-related enzymes in basal ganglia neurons. Mice without CB1 receptors are extremely hypoactive in a test for exploratory behavior (open-field test), showing markedly reduced locomotion and rearing. These CB1 mutants display significantly increased levels of substance P, dynorphin, enkephalin, and GAD 67 mRNAs in neurons of the two output pathways of the striatum that project to the substantia nigra and the globus pallidus. Our findings demonstrate that elimination of CB1 receptors results in behavioral abnormalities and functional reorganization of the basal ganglia.  (+info)