Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. (25/170)

Geminiviruses are devastating viruses of plants that possess single-stranded DNA (ssDNA) DNA genomes. Despite the importance of this class of phytopathogen, there have been no estimates of the rate of nucleotide substitution in the geminiviruses. We report here the evolutionary rate of the tomato yellow leaf curl disease-causing viruses, an intensively studied group of monopartite begomoviruses. Sequences from GenBank, isolated from diseased plants between 1988 and 2006, were analyzed using Bayesian coalescent methods. The mean genomic substitution rate was estimated to be 2.88 x 10(-4) nucleotide substitutions per site per year (subs/site/year), although this rate could be confounded by frequent recombination within Tomato yellow leaf curl virus genomes. A recombinant-free data set comprising the coat protein (V1) gene in isolation yielded a similar mean rate (4.63 x 10(-4) subs/site/year), validating the order of magnitude of genomic substitution rate for protein-coding regions. The intergenic region, which is known to be more variable, was found to evolve even more rapidly, with a mean substitution rate of approximately 1.56 x 10(-3) subs/site/year. Notably, these substitution rates, the first reported for a plant DNA virus, are in line with those estimated previously for mammalian ssDNA viruses and RNA viruses. Our results therefore suggest that the high evolutionary rate of the geminiviruses is not primarily due to frequent recombination and may explain their ability to emerge in novel hosts.  (+info)

The N-terminus of the Begomovirus nuclear shuttle protein (BV1) determines virulence or avirulence in Phaseolus vulgaris. (26/170)

The BV1 gene of the bipartite Begomovirus genome encodes a nuclear shuttle protein (NSP) that is also an avirulence determinant in common bean. The function of the NSP of two common bean-infecting bipartite begomoviruses, Bean dwarf mosaic virus (BDMV) and Bean golden yellow mosaic virus (BGYMV), was investigated using a series of hybrid DNA-B components expressing chimeric BDMV and BGYMV NSP, and genotypes of the two major common bean gene pools: Andean (cv. Topcrop) and Middle American (cvs. Alpine and UI 114). BDMV DNA-A coinoculated with HBDBG4 (BDMV DNA-B expressing the BGYMV NSP) and HBDBG9 (BDMV DNA-B expressing a chimeric NSP with the N-terminal 1 to 42 amino acids from BGYMV) overcame the BDMV resistance of UI 114. This established that the BDMV NSP is an avirulence determinant in UI 114, and mapped the domain involved in this response to the N-terminus, which is a variable surface-exposed region. BDMV DNA-A coinoculated with HBDBG10, expressing a chimeric NSP with amino acids 43 to 92 from BGYMV, was not infectious, revealing an essential virus-specific domain. In the BGYMV background, the BDMV NSP was a virulence factor in the Andean cv. Topcrop, whereas it was an avirulence factor in the Middle American cultivars, particularly in the absence of the BGYMV NSP. The capsid protein (CP) also played a gene pool-specific role in viral infectivity; it was dispensable for infectivity in the Andean cv. Topcrop, but was required for infectivity of BDMV, BGYMV, and certain hybrid viruses in the Middle American cultivars. Redundancy of the CP and NSP, which are nuclear proteins involved directly or indirectly in viral movement, provides a masking effect that may allow the virus to avoid host defense responses.  (+info)

The mungbean yellow mosaic begomovirus transcriptional activator protein transactivates the viral promoter-driven transgene and causes toxicity in transgenic tobacco plants. (27/170)

The Begomovirus transcriptional activator protein (TrAP/AC2/C2) is a multifunctional protein which activates the viral late gene promoters, suppresses gene silencing, and determines pathogenicity. To study TrAP-mediated transactivation of a stably integrated gene, we generated transgenic tobacco plants with a Mungbean yellow mosaic virus (MYMV) AV1 late gene promoter-driven reporter gene and supertransformed them with the MYMV TrAP gene driven by a strong 35S promoter. We obtained a single supertransformed plant with an intact 35S-TrAP gene that activated the reporter gene 2.5-fold. However, 10 of the 11 supertransformed plants did not have the TrAP region of the T-DNA, suggesting the likely toxicity of TrAP in plants. Upon transformation of wild-type tobacco plants with the TrAP gene, six of the seven transgenic plants obtained had truncated T-DNAs which lacked TrAP. One plant, which had the intact TrAP gene, did not express TrAP. The apparent toxic effect of the TrAP transgene was abolished by mutations in its nuclear-localization signal or zinc-finger domain and by deletion of its activation domain. Therefore, all three domains of TrAP, which are required for transactivation and suppression of gene silencing, also are needed for its toxic effect.  (+info)

The hypersensitive response to tomato leaf curl New Delhi virus nuclear shuttle protein is inhibited by transcriptional activator protein. (28/170)

The hypersensitive response (HR) is a common feature of plant disease resistance reactions and a type of programmed cell death (PCD). Many pathogens are able to modulate pathways involved in cell death. In contrast to animal viruses, inhibitors of PCD activity have not been identified for plant-infecting viruses. Previously, we have reported that the nuclear shuttle protein (NSP) of Tomato leaf curl New Delhi virus (ToLCNDV) induces an HR in Nicotiana tabacum and Lycopersicon esculentum plants when expressed under the control of the Cauliflower mosaic virus 35S promoter. However, HR is not evident in plants infected with ToLCNDV, suggesting that the virus encodes a factor (or factors) that counters this response. Analysis of all ToLCNDV-encoded genes pinpointed the transcriptional activator protein (TrAP) as the factor mediating the anti-HR effect. Deletion mutagenesis showed the central region of TrAP, containing a zinc finger domain and nuclear localization signal, to be important in inhibiting the HR. These results demonstrate that TrAP counters HR-induced cell death, the first such activity identified for a plant-infecting virus.  (+info)

Begomovirus 'melting pot' in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. (29/170)

During the last few decades, many virus species have emerged, often forming dynamic complexes within which viruses share common hosts and rampantly exchange genetic material through recombination. Begomovirus species complexes are common and represent serious agricultural threats. Characterization of species complex diversity has substantially contributed to our understanding of both begomovirus evolution, and the ecological and epidemiological processes involved in the emergence of new viral pathogens. To date, the only extensively studied emergent African begomovirus species complex is that responsible for cassava mosaic disease. Here we present a study of another emerging begomovirus species complex which is associated with serious disease outbreaks in bean, tobacco and tomato on the south-west Indian Ocean (SWIO) islands off the coast of Africa. On the basis of 14 new complete DNA-A sequences, we describe seven new island monopartite begomovirus species, suggesting the presence of an extraordinary diversity of begomovirus in the SWIO islands. Phylogenetic analyses of these sequences reveal a close relationship between monopartite and bipartite African begomoviruses, supporting the hypothesis that either bipartite African begomoviruses have captured B components from other bipartite viruses, or there have been multiple B-component losses amongst SWIO virus progenitors. Moreover, we present evidence that detectable recombination events amongst African, Mediterranean and SWIO begomoviruses, while substantially contributing to their diversity, have not occurred randomly throughout their genomes. We provide the first statistical support for three recombination hot-spots (V1/C3 interface, C1 centre and the entire IR) and two recombination cold-spots (the V2 and the third quarter of V1) in the genomes of begomoviruses.  (+info)

Inhibition of tomato yellow leaf curl virus replication by artificial zinc-finger proteins. (30/170)

Previously, we designed an artificial zinc-finger protein (AZP) for blocking a replication protein (Rep) of beet severe curly top virus (BSCTV) from binding to its replication origin and demonstrated that transgenic Arabidopsis plants expressing the AZP are completely resistant to the virus infection. Here we applied the AZP technology to tomato yellow leaf curl virus (TYLCV) infective to an important agricultural crop, tomato. We designed an AZP binding to the direct repeat to block the TYLCV Rep binding and confirmed in gel shift assays that the designed AZP has a higher affinity to the replication origin than that of Rep. Furthermore, we demonstrated in competitive binding assays that the AZP effectively inhibited the Rep binding in vitro. We discuss properties of the AZP for inhibition of TYLCV replication in detail.  (+info)

Avoidance of protein fold disruption in natural virus recombinants. (31/170)

With the development of reliable recombination detection tools and an increasing number of available genome sequences, many studies have reported evidence of recombination in a wide range of virus genera. Recombination is apparently a major mechanism in virus evolution, allowing viruses to evolve more quickly by providing immediate direct access to many more areas of a sequence space than are accessible by mutation alone. Recombination has been widely described amongst the insect-transmitted plant viruses in the genus Begomovirus (family Geminiviridae), with potential recombination hot- and cold-spots also having been identified. Nevertheless, because very little is understood about either the biochemical predispositions of different genomic regions to recombine or what makes some recombinants more viable than others, the sources of the evolutionary and biochemical forces shaping distinctive recombination patterns observed in nature remain obscure. Here we present a detailed analysis of unique recombination events detectable in the DNA-A and DNA-A-like genome components of bipartite and monopartite begomoviruses. We demonstrate both that recombination breakpoint hot- and cold-spots are conserved between the two groups of viruses, and that patterns of sequence exchange amongst the genomes are obviously non-random. Using a computational technique designed to predict structural perturbations in chimaeric proteins, we demonstrate that observed recombination events tend to be less disruptive than sets of simulated ones. Purifying selection acting against natural recombinants expressing improperly folded chimaeric proteins is therefore a major determinant of natural recombination patterns in begomoviruses.  (+info)

Melon chlorotic leaf curl virus: characterization and differential reassortment with closest relatives reveal adaptive virulence in the squash leaf curl virus clade and host shifting by the host-restricted bean calico mosaic virus. (32/170)

The genome components of the Melon chlorotic leaf curl virus (MCLCuV) were cloned from symptomatic cantaloupe leaves collected in Guatemala during 2002. The MCLCuV DNA-A and DNA-B components shared their closest nucleotide identities among begomoviruses, at approximately 90 and 81%, respectively, with a papaya isolate of MCLCuV from Costa Rica. The closest relatives at the species level were other members of the Squash leaf curl virus (SLCV) clade, which is endemic in the southwestern United States and Mexico. Biolistic inoculation of cantaloupe seedlings with the MCLCuV DNA-A and -B components resulted in the development of characteristic disease symptoms, providing definitive evidence of causality. MCLCuV experimentally infected species within the Cucurbitaceae, Fabaceae, and Solanaceae. The potential for interspecific reassortment was examined for MCLCuV and its closest relatives, including the bean-restricted Bean calico mosaic virus (BCaMV), and three other cucurbit-infecting species, Cucurbit leaf crumple virus (CuLCrV), SLCV, and SMLCV. The cucurbit viruses have distinct but overlapping host ranges. All possible reassortants were established using heterologous combinations of the DNA-A or DNA-B components. Surprisingly, only certain reassortants arising from MCLCuV and BCaMV, or MCLCuV and CuLCrV, were viable in bean, even though it is a host of all of the "wild-type" (parent) viruses. The bean-restricted BCaMV was differentially assisted in systemically infecting the cucurbit test species by the components of the four cucurbit-adapted begomoviruses. In certain heterologous combinations, the BCaMV DNA-A or -B component was able to infect one or more cucurbit species. Generally, the reassortants were less virulent in the test hosts than the respective wild-type (parent) viruses, strongly implicating adaptive modulation of virulence. This is the first illustration of reassortment resulting in the host range expansion of a host-restricted begomovirus.  (+info)