Functional and physiological consequences of genetic variation at phosphoglucose isomerase: heat shock protein expression is related to enzyme genotype in a montane beetle. (49/1413)

Allele frequency variation at the phosphoglucose isomerase (PGI) locus in Californian populations of the beetle Chrysomela aeneicollis suggests that PGI may be undergoing natural selection. We quantified (i) apparent Michaelis-Menten constant (K(m)) of fructose 6-phosphate at different temperatures and (ii) thermal stability for three common PGI genotypes (1-1, 1-4, and 4-4). We also measured air temperature (T(a)) and beetle body temperature (T(b)) in three montane drainages in the Sierra Nevada, California. Finally, we measured 70-kDa heat shock protein (Hsp70) expression in field-collected and laboratory-acclimated beetles. We found that PGI allele 1 predominated in the northernmost drainage, Rock Creek (RC), which was also significantly cooler than the southernmost drainage, Big Pine Creek (BPC), where PGI allele 4 predominated. Allele frequencies and air temperatures were intermediate in the middle drainage, Bishop Creek (BC). Differences among genotypes in K(m) (1-1 > 1-4 > 4-4) and thermal stability (4-4 > 1-4 > 1-1) followed a pattern consistent with temperature adaptation. In nature, T(b) was closely related to T(a). Hsp70 expression in adult beetles decreased with elevation and differed among drainages (BPC > BC > RC). After laboratory acclimation (8 days, 20 degrees C day, 4 degrees C night) and heat shock (4 h, 28-36 degrees C), Hsp70 expression was greater for RC than BPC beetles. In RC, field-collected beetles homozygous for PGI 1-1 had higher Hsp70 levels than heterozygotes or a 4-4 homozygote. These results reveal functional and physiological differences among PGI genotypes, which suggest that montane populations of this beetle are locally adapted to temperature.  (+info)

Asynchronous muscle: a primer. (50/1413)

The asynchronous muscles of insects are characterized by asynchrony between muscle electrical and mechanical activity, a fibrillar organization with poorly developed sarcoplasmic reticulum, a slow time course of isometric contraction, low isometric force, high passive stiffness and delayed stretch activation and shortening deactivation. These properties are illustrated by comparing an asynchronous muscle, the basalar flight muscle of the beetle Cotinus mutabilis, with synchronous wing muscles from the locust, Schistocerca americana. Because of delayed stretch activation and shortening deactivation, a tetanically stimulated beetle muscle can do work when subjected to repetitive lengthening and shortening. The synchronous locust muscle, subjected to similar stimulation and length change, absorbs rather than produces work.  (+info)

Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. (51/1413)

Serratia entomophila and Serratia proteamaculans cause amber disease in the grass grub Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. Larval disease symptoms include cessation of feeding, clearance of the gut, amber coloration, and eventual death. A 115-kb plasmid, pADAP, identified in S. entomophila is required for disease causation and, when introduced into Escherichia coli, enables that organism to cause amber disease. A 23-kb fragment of pADAP that conferred disease-causing ability on E. coli and a pADAP-cured strain of S. entomophila was isolated. Using insertion mutagenesis, the pathogenicity determinants were mapped to a 17-kb region of the clone. Sequence analysis of the 17-kb region showed that the predicted products of three of the open reading frames (sepA, sepB, and sepC) showed significant sequence similarity to components of the insecticidal toxin produced by the bacterium Photorhabdus luminescens. Transposon insertions in sepA, sepB, or sepC completely abolished both gut clearance and cessation of feeding on the 23-kb clone; when recombined back into pADAP, they abolished gut clearance but not cessation of feeding. These results suggest that SepA, SepB, and SepC together are sufficient for amber disease causation by S. entomophila and that another locus also able to exert a cessation-of-feeding effect is encoded elsewhere on pADAP.  (+info)

The function of resilin in beetle wings. (52/1413)

This account shows the distribution of elastic elements in hind wings in the scarabaeid Pachnoda marginata and coccinellid Coccinella septempunctata (both Coleoptera). Occurrence of resilin, a rubber-like protein, in some mobile joints together with data on wing unfolding and flight kinematics suggest that resilin in the beetle wing has multiple functions. First, the distribution pattern of resilin in the wing correlates with the particular folding pattern of the wing. Second, our data show that resilin occurs at the places where extra elasticity is needed, for example in wing folds, to prevent material damage during repeated folding and unfolding. Third, resilin provides the wing with elasticity in order to be deformable by aerodynamic forces. This may result in elastic energy storage in the wing.  (+info)

Affinity labeling fatty acyl-CoA synthetase with 9-p-azidophenoxy nonanoic acid and the identification of the fatty acid-binding site. (53/1413)

Fatty acyl-CoA synthetase (FACS, fatty acid:CoA ligase, AMP-forming, EC ) catalyzes the esterification of fatty acids to CoA thioesters for further metabolism and is hypothesized to play a pivotal role in the coupled transport and activation of exogenous long-chain fatty acids in Escherichia coli. Previous work on the bacterial enzyme identified a highly conserved region (FACS signature motif) common to long- and medium-chain acyl-CoA synthetases, which appears to contribute to the fatty acid binding pocket. In an effort to further define the fatty acid-binding domain within this enzyme, we employed the affinity labeled long-chain fatty acid [(3)H]9-p-azidophenoxy nonanoic acid (APNA) to specifically modify the E. coli FACS. [(3)H]APNA labeling of the purified enzyme was saturable and specific for long-chain fatty acids as shown by the inhibition of modification with increasing concentrations of palmitate. The site of APNA modification was identified by digestion of [(3)H]APNA cross-linked FACS with trypsin and separation and purification of the resultant peptides using reverse phase high performance liquid chromatography. One specific (3)H-labeled peptide, T33, was identified and following purification subjected to NH(2)-terminal sequence analysis. This approach yielded the peptide sequence PDATDEIIK, which corresponded to residues 422 to 430 of FACS. This peptide is immediately adjacent to the region of the enzyme that contains the FACS signature motif (residues 431-455). This work represents the first direct identification of the carboxyl-containing substrate-binding domain within the adenylate-forming family of enzymes. The structural model for the E. coli FACS predicts this motif lies within a cleft separating two distinct domains of the enzyme and is adjacent to a region that contains the AMP/ATP signature motif, which together are likely to represent the catalytic core of the enzyme.  (+info)

Sperm competition games played by dimorphic male beetles: fertilization gains with equal mating access. (54/1413)

Alternative mating tactics can generate asymmetry in the sperm competition risk between males within species. Theory predicts that adaptations to sperm competition should arise in males facing the greater risk. This prediction is met in the dung beetle Onthophagus binodis where minor males which sneak copulations have a greater expenditure on the ejaculate. In its congener Onthophagus taurus there is a reduced asymmetry in sperm competition risk such that both tactics have equal ejaculate expenditure. We used the irradiated male technique to test whether adaptations to sperm competition in minor males result in higher paternity. We found that for both species, on average, each of two males gained equal numbers of fertilizations, confirming the assumption that sperm compete in a raffle. There were no differences in the sperm competition success of major and minor males in O. taurus as predicted from their equal expenditure on their ejaculate. Contrary to expectations, there were also no differences in fertilization success between the male tactics in O. binodis. Thus, in O. binodis minor males must expend more on their ejaculate in order to obtain the same fertilization gains as major males.  (+info)

A masquerade-like serine proteinase homologue is necessary for phenoloxidase activity in the coleopteran insect, Holotrichia diomphalia larvae. (55/1413)

Previously, we reported the molecular cloning of cDNA for the prophenoloxidase activating factor-I (PPAF-I) that encoded a member of the serine proteinase group with a disulfide-knotted motif at the N-terminus and a trypsin-like catalytic domain at the C-terminus [Lee, S.Y., Cho, M.Y., Hyun, J.H., Lee, K.M., Homma, K.I., Natori, S. , Kawabata, S.I., Iwanaga, S. & Lee, B.L. (1998) Eur. J. Biochem. 257, 615-621]. PPAF-I is directly involved in the activation of pro-phenoloxidase (pro-PO) by limited proteolysis and the overall structure is highly similar to that of Drosophila easter serine protease, an essential serine protease zymogen for pattern formation in normal embryonic development. Here, we report purification and molecular cloning of cDNA for another 45-kDa novel PPAF from the hemocyte lysate of Holotrichia diomphalia larvae. The gene encodes a serine proteinase homologue consisting of 415 amino-acid residues with a molecular mass of 45 256 Da. The overall structure of the 45-kDa protein is similar to that of masquerade, a serine proteinase homologue expressed during embryogenesis, larval, and pupal development in Drosophila melanogaster. The 45-kDa protein contained a trypsin-like serine proteinase domain at the C-terminus, except for the substitution of Ser of the active site triad to Gly and had a disulfide-knotted domain at the N-terminus. A highly similar 45-kDa serine proteinase homologue was also cloned from the larval cDNA library of another coleopteran, Tenebrio molitor. By in vitro reconstitution experiments, we found that the purified 45-kDa serine proteinase homologue, the purified active PPAF-I and the purified pro-PO were necessary for expressing phenoloxidase activity in the Holotrichia pro-PO system. However, incubation of pro-PO with either PPAF-I or 45-kDa protein, no phenoloxidase activity was observed. Interestingly, when the 45-kDa protein was incubated with PPAF-I and pro-PO in the absence, but not in the presence of Ca2+, the 45-kDa protein was cleaved to a 35-kDa protein. RNA blot hybridization revealed that expression of the 45-kDa protein was increased in the Holotrichia hemolymph after Escherichia coli challenge.  (+info)

Chemical defense: aquatic beetle (Dineutes hornii) vs. fish (Micropterus salmoides). (56/1413)

Captive largemouth bass (Micropterus salmoides) reject the gyrinid beetle, Dineutes hornii. They also reject edible items (mealworms) treated by topical addition of the norsesquiterpene gyrinidal, the principal component of the defensive secretion of the beetle. The bass' oral tolerance of gyrinidal varies broadly as a function of the gyrinidal dosage and the state of satiation of the fish. When taking a D. hornii or a gyrinidal-treated mealworm in the mouth, the fish subjects the item to an intensive oral flushing behavior, seemingly intended to rid the item of gyrinidal. The duration of oral flushing is itself a function of the gyrinidal dosage and the state of satiation of the bass. To counter oral flushing, D. hornii emits its secretion as a slow trickle. Duration of emission is slightly longer (1.5 min) than the time (1.3 min) invested by the bass in flushing a D. hornii before rejecting the beetle. We postulate that flush resistance may be a general feature of defensive chemical delivery systems in aquatic prey, given that oral flushing may be a common strategy of fish.  (+info)